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Abstract

We consider signaling and learning dynamics in a Cournot oligopoly where firms

have private information about their production costs and only observe the market

price, which is subject to unobservable demand shocks. A strategy profile is Markov

if it depends on the history of play only through the firms’ beliefs about costs and

calendar time. We derive a representation of symmetric linear Markov strategies, and

characterize equilibria in strategies of this form. In every such Markov equilibrium,

given long enough horizon, play converges to the static complete information outcome

for the realized costs, but each firm only learns its competitors’ average cost. The

weights assigned to private and public information under the equilibrium strategies are

non-monotone over time. We explain this by decomposing incentives into signaling and

learning, and discuss implications for prices, quantities, and profits. Signaling depresses

prices below their complete information levels, resulting in the expected price being

increasing from the consumers’ perspective.

1 Introduction

Despite the role of asymmetric information in explaining specific anti-competitive prac-

tices such as limit pricing (Milgrom and Roberts, 1982b) or price rigidity in cartels

(Athey and Bagwell, 2008), the question of learning and information aggregation in

product markets under incomplete information has received little theoretical atten-

tion. Motivated by the recent interest in the industrial organization of such markets

(see, e.g., Fershtman and Pakes, 2012; Doraszelski, Lewis, and Pakes, 2014), we provide

a theoretical analysis of “Markov perfect oligopolistic competition” in a new market

where firms have incomplete information about their rivals’ production costs.

∗Acknowledgements to be added.
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More specifically, we study a dynamic Cournot oligopoly where each firm has private

information about its cost and only observes the market price, which is subject to

unobservable demand shocks. The presence of asymmetric information introduces the

possibility of signaling with the resulting dynamics capturing the jockeying for position

among oligopolists before the market reaches its long-run equilibrium.

The main challenge in analyzing such settings is keeping track of the firms’ beliefs.

We therefore consider a linear Gaussian environment, casting the analysis in continuous

time. That is, the market demand function and the firms’ cost functions are assumed

linear in quantities, the constant marginal costs are drawn once and for all from a

symmetric normal prior, and the noise in the market price is given by the increments

of a Brownian motion. Restricting attention to equilibria in strategies that are linear

in the history, we can then derive the firms’ beliefs using the Kalman filter.

When costs are private information, a natural way to impose a Markov restriction on

behavior is to allow current outputs to depend on the history only through the firms’

beliefs about the costs. But when outputs are unobservable, these beliefs are also

private information: not observing its output, a firm’s rivals cannot tell what inference

the firm made from the price. Thus, if the firm plays as a function of its belief—that is,

if the belief is part of its “state”—then its rivals have to entertain (private) beliefs about

this belief, and so on, making the problem seemingly intractable.1 However, building

on Foster and Viswanathan’s (1996) analysis of a multi-agent version of Kyle’s (1985)

insider trading model, we show that under symmetric linear strategies each firm’s belief

can be written as the weighted sum of its own cost and the public posterior expectation

about the average industry cost conditional on past prices. In particular, own cost and

the public belief are sufficient statistics for the firm’s beliefs despite there being a non-

trivial hierarchy of beliefs. The same is true even if the firm unilaterally deviates from

the symmetric linear strategy profile once we appropriately augment these statistics to

account for the bias in the public belief caused by the deviation.

The representation of beliefs allows representing all symmetric linear Markov strate-

gies as determining output as an affine, time-dependent function of the firm’s own cost

and the public belief. We consider equilibria in such strategies, and show that they

are characterized by solutions to a boundary value problem, which is the key to our

analysis.

The boundary value problem characterizing Markov equilibria consists of a system

of differential equations for the coefficients of the equilibrium strategy and the posterior

variance of the public belief. As is well known, there is no general existence theory for

such problems. Indeed, the biggest technical challenge in our analysis is establishing the

existence of a solution to the boundary value problem, or, equivalently, the existence of

1This is the “forecasting the forecasts of others problem” of Townsend (1983). See also Vives (1995).
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a symmetric linear Markov equilibrium. We provide a sufficient condition for existence

in terms of the model’s parameters, which amounts to requiring that the incentive

to signal not be too strong. The condition is not tight but not redundant either: a

Markov equilibrium may fail to exist if the signaling incentive is sufficiently strong. On

the other hand, it turns out that surprisingly much can be said analytically about the

properties of Markov equilibria.

Regarding learning and long-run behavior, we show that in every symmetric linear

Markov equilibrium, play converges to the static complete information outcome for the

realized costs provided that the horizon is taken to be long enough. However, the firms

only learn the average cost of their rivals because of the identification problem caused

by the ex ante symmetry of firms and the one-dimensional market price.

The equilibrium strategy assigns weights to the firm’s own cost and the public infor-

mation that are non-monotone in time. We show that after an appropriate regrouping

of terms, this can be understood as arising from learning and signaling. Roughly,

equilibrium coefficients under myopic play, which only reflects learning, are monotone

over time. Similarly, the coefficients that correspond to the signaling component of

a forward-looking player’s best response are monotone over time, but in the opposite

direction than under myopic play. It is these two opposite monotone effects that sum

up to the non-monotone coefficients of the equilibrium strategy.

Signaling results in the expected total quantity being above the corresponding static

complete information level, which in turn implies that the expected market price is

depressed below its static complete information level. In particular, at any point in

time, consumers only observing historical prices expect prices to increase in the future.

Nevertheless, it turns out that the difference in any two firms’ outputs is non-monotone

over time conditional on their costs. This has implications for productive efficiency.

For example, we show that this may lead the expected profitability of the market to

be the highest in the medium run.

Finally, even though deriving analytical results about the boundary value problem

characterizing equilibria requires some work, finding a solution to the system numeri-

cally is trivial. Thus, in contrast to the numerical analysis of discrete dynamic oligopoly

models following Ericson and Pakes (1995), or, in the case of incomplete information,

Fershtman and Pakes (2012), our problem is computationally much simpler.

At a broad level, our analysis is related to three strands of literature: repeated

games of incomplete information, strategic use of information in markets, and dynamic

oligopoly.

The literature on repeated Bayesian games with fully or partially persistent types

has almost exclusively restricted attention to patient players, often focusing on coop-

erative equilibria supported by the threat of future punishments (see, e.g., Aumann
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and Maschler, 1995, Athey and Bagwell, 2008, Hörner and Lovo, 2009, Escobar and

Toikka, 2013, Peski, 2014, or Hörner, Takahashi, and Vieille, forthcoming).2 In con-

trast, we focus on Markov equilibria for a fixed discount rate, and conduct the analysis

in continuous time to gain tractability.

A sizable literature studies strategic use of information and its aggregation through

prices in financial markets following the seminal analysis by Kyle (1985). Most closely

related to our work is the multiagent version of Kyle’s model developed by Foster and

Viswanathan (1996), and its continuous-time analog studied by Back (1992) and Back,

Cao, and Willard (2000). However, strategic trading in a financial market with common

values differs starkly from product market competition under strategic substitutes and

private values. In the former, the players limit their trades in order to retain their

informational advantage, whereas in the latter, they engage in excess production in an

effort to signal their costs and to discourage their rivals.

Related to this theme is also the literature on information sharing in oligopoly, be-

ginning with Vives (1984) and Gal-Or (1985), and generalized by Raith (1996). More

recent contributions considering static oligopolistic competition with private informa-

tion include, among others, works by Vives (2011) and Bernhardt and Taub (2015).

The early literature on the effects of private information in dynamic oligopolistic

markets mostly considers two period models, often with one-sided private information,

focusing on issues such as limit pricing and predation that are complementary to our

analysis of learning and signaling over a long horizon. See, e.g., Milgrom and Roberts

(1982a), Riordan (1985), Fudenberg and Tirole (1986), or the dynamic analysis of

reputation by Milgrom and Roberts (1982b). More related are Mailath (1989) and

Mester (1992), who construct separating equilibria in two and three-period oligopoly

games with private costs and observable actions, and Mirman, Samuelson, and Urbano

(1993), who provide a theory of signal-jamming in a duopoly with common demand

uncertainty. Our model has elements of both as noisy signaling eventually leads to

the play converging to the complete information outcome, but in the meantime the

equilibrium strategies exhibit signal-jamming.

More recently, Athey and Bagwell (2008) study collusion among patient firms in a

repeated Bertrand oligopoly with fully persistent private costs as in our model. Their

main interest is in identifying conditions under which the best collusive equilibrium

features rigid pricing at the cost of productive efficiency. In such equilibria, all cost

types pool at the same price and there is no learning. In contrast, we consider a

Cournot oligopoly with a fixed discount rate, and focus on Markov equilibria where

firms actively signal their costs and learning is central to the analysis.

2There is also a literature on learning in repeated games of incomplete information under myopic play,
see, e.g., Nyarko (1997).
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Fershtman and Pakes (2012) consider the steady state of a learning-inspired adjust-

ment process in a dynamic oligopoly with privately observed states in an effort to incor-

porate incomplete information into the analysis of Markov-perfect industry dynamics

(Ericson and Pakes, 1995, Doraszelski and Satterthwaite, 2010, Weintraub, Benkard,

and Van Roy, 2008). Their approach is entirely computation-oriented, whereas we

apply a standard solution concept and focus on analytical results.

Finally, Cisternas (2015) develops methods for continuous-time games where learn-

ing is common in equilibrium but private beliefs arise after deviations. In contrast, our

firms start with private costs and have private beliefs even on the equilibrium path.

The rest of the paper is organized as follows. We setup the model in the next

section, and consider the firms’ beliefs under linear strategies in Section 3. We then

turn to Markov strategies and Markov equilibria in Section 4, and discuss properties of

such equilibria in Section 5. We conclude in Section 6 with a discussion of the modeling

assumptions and possible extensions. All proofs are in the Appendix.

2 The Model

We consider a Cournot oligopoly game with privately-known costs and imperfect mon-

itoring, played in continuous time over the compact interval [0, T ]. There are n ≥ 2

firms, each with a privately-known (marginal) cost Ci (i = 1, . . . , n). The firms’ com-

mon prior is that the costs are i.i.d. normal random variables with mean π0 and variance

g0.
3

At each time t ∈ [0, T ], each firm i supplies a quantity Qit ∈ R. The firms do not

observe each others’ quantities, but observe the (cumulative) price process

dYt = (p̄−
∑
i

Qit)dt+ σdZt, (1)

where p̄ > 0 is the demand intercept, σ2 > 0 is the variance, and Z is a standard

Brownian motion that is independent of the firms’ costs. The current market price is

given by the increment of the controlled process Y . The resulting flow payoff to firm i

is Qit(dYt − Cidt), which the firm discounts at rate r ≥ 0 common to all firms.

A pure strategy for a firm determines current output as a function of the firm’s

cost, past prices, and own past outputs. However, because of the noise in the market

price, no firm can ever observe that another firm has deviated from a given strategy.4

For the analysis of equilibrium outcomes it therefore suffices to know the quantities

3We discuss the role of assumptions such as symmetry and independence in Section 6.
4As the firms’ quantities only affect the drift of Y , the monitoring structure has full support in the sense

that any two (admissible) strategy profiles induce equivalent measures over the space of sample paths of Y .
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each firm’s strategy specifies at histories that are consistent with the strategy being

followed, i.e., on the path play. Thus, abusing terminology, we define a strategy to

be only a function of the firm’s cost and prices, leaving off-path behavior unspecified.

This notion of strategy can be viewed as extending public strategies studied in repeated

games with imperfect public monitoring to a setting with private costs.

Formally, a (pure) strategy for firm i is a process Qi that is progressively measurable

with respect to the filtration generated by (Ci, Y ).5 A strategy profile (Q1, . . . , Qn) is

admissible if (i) for each i, E[
´ T
0 (Qit)

2dt] < ∞, in which case we write Qi ∈ L2[0, T ],

and (ii) equation (1) has a unique solution Y ∈ L2[0, T ]. The expected payoff of firm

i under an admissible strategy profile is well defined and given by

E
[ˆ T

0
e−rtQitdYt − Ci

ˆ T

0
e−rtQitdt

]
= E

[ˆ T

0
e−rt(p̄−

∑
j

Qjt − Ci)Qitdt
]
. (2)

Payoff from all other strategy profiles is set to −∞. In what follows, a strategy profile

is always understood to mean an admissible one unless noted otherwise.

A Nash equilibrium is a strategy profile (Q1, . . . , Qn) from which no firm has a

profitable deviation.6 We focus on equilibria in strategies that are linear in histories

to facilitate tractable updating of beliefs, but we allow firms to contemplate deviations

to arbitrary strategies. Formally, firm i’s strategy Qi is linear if there exist (Borel

measurable) functions α, δ : [0, T ]→ R and f : [0, T ]2 → R such that7

Qit = αtC
i +

ˆ t

0
f tsdYs + δt, t ∈ [0, T ]. (3)

A profile of linear strategies is symmetric if the functions (α, f, δ) are the same for

all firms. Our interest is in Nash equilibria in symmetric linear strategies that condi-

tion on the history only through its effect on the firms’ beliefs about the cost vector

(C1, . . . , Cn) and calendar time. Such equilibria, defined formally below, are a natural

extension of Markov perfect equilibrium to our model.

5More precisely, let Bi be the sigma-algebra on R generated by Ci, and let F = {Ft} be the filtration on
C[0, T ], the space of continuous functions on [0, T ], where each Ft is generated by sets {f ∈ C[0, T ] : fs ∈ Γ},
where s ≤ t and Γ is a Borel set in R. (Heuristically, F corresponds to observing the past of the process Y .)
A strategy is a process Qi that is progressively measurable with respect to F̄ i := {F̄ i

t}, where F̄ i
t := Bi⊗Ft.

6The best-response problem against a profile Q−i of other players’ strategies can be viewed as a stochastic
control problem with a partially observable state (see, e.g., Davis and Varaiya, 1973, or the general formula-
tion in Davis, 1979). In particular, any admissible strategy profile (Qi, Q−i) induces a probability measure

P(Qi,Q−i) such that (1) holds. A deviation to any strategy Q̂i such that (Q̂i, Q−i) is admissible amounts to

changing the measure to P(Q̂i,Q−i) (cf. Sannikov, 2007); payoff from other deviations is −∞.
7A necessary and sufficient condition for a linear strategy profile to be admissible is that all the functions α,

δ, and f be square-integrable over their respective domains (Kallianpur, 1980, Theorem 9.4.2). Note that in
discrete time, any affine function of own cost and past prices takes the form qit = αtci+

∑
s<t f

t
s(ys−ys−1)+δt.

Equation (3) can be viewed as a limit of such strategies.
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3 Beliefs under Linear Strategies

As a step towards Markov equilibria, we derive sufficient statistics for the firms’ beliefs

about costs under symmetric linear strategies and unilateral deviations from them.

Fix firm i, and suppose the other firms are playing symmetric linear strategies so

that Qjt = αtC
j + Bt(Y

t) for j 6= i, where Bt(Y
t) :=

´ t
0 f

t
sdYs + δt. Regardless of its

own strategy, firm i can always subtract the effect of its own quantity and that of the

public component Bt(Y
t) of the other firms’ quantities on the price, and hence the

relevant signal for firm i about Cj , j 6= i, is

dY i
t := −αt

∑
j 6=i

Cjdt+ σdZt = dYt −
(
p̄−Qit − (n− 1)Bt(Y

t)
)
dt. (4)

Therefore, firm i’s belief about the other firms’ costs can be derived by applying the

Kalman filter with Y i as the signal and C−i as the unknown vector. Moreover, since the

other firms are ex ante symmetric and play symmetric strategies, firm i can only ever

hope to filter the sum of their costs. The following lemma formalizes these observations.

Lemma 1. Under any symmetric linear strategy profile and any strategy of firm i,

firm i’s posterior at t ∈ [0, T ] is that Cj, j 6= i, are jointly normal, each with mean

M i
t := 1

n−1E
[∑

j 6=iC
j
∣∣FY i

t

]
, and with a symmetric covariance matrix Γt = Γ(γMt ),

where the function Γ : R→ R2(n−1) is independent of t, and

γMt := E
[(∑

j 6=i
Cj − (n− 1)M i

t

)2∣∣∣FY i

t

]
=

(n− 1)g0

1 + (n− 1)g0
´ t
0 (αs

σ )2ds

is a deterministic nonincreasing function of t.

The upshot of Lemma 1 is that firm i’s belief is summarized by the pair (M i
t , γ

M
t ).

The expectation about the other firms’ average cost, M i
t , is firm i’s private information

as the other firms do not observe i’s quantity and hence do not know what inference it

made. (Formally, Qi enters Y i.) The posterior variance γMt is a deterministic function

of time because the function α in the other firms’ strategy is taken as given.

By Lemma 1, asking symmetric linear strategies to condition on history only

through beliefs amounts to requiring each firm i’s output at time t to only depend

on Ci, M i
t , and t. From the perspective of the normal form of the game, this is simply

a measurability requirement on the firms’ strategies, and causes no immediate prob-

lems. However, showing the existence of a Nash equilibrium in strategies of this form

requires verifying the optimality of the strategies to each firm, and for this it is essen-

tially necessary to use dynamic optimization. But formulating firm i’s best-response

problem as a dynamic optimization problem, we then have M j , j 6= i, appearing as

unobservable states in firm i’s problem, and we thus need to consider i’s second-order
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beliefs about them. Indeed, it could even be the case that firm i’s best response then

has to explicitly condition on these second-order beliefs, requiring them to be added

to the state, and so on, leading to an infinite regress problem.

It turns out, however, that for linear Gaussian models there is an elegant solution,

first applied to a strategic setting by Foster and Viswanathan (1996). The key obser-

vation is that each firm’s private belief can be expressed as a weighted sum of its own

cost and the public belief about the average cost conditional on past prices. Thus, even

when the other firms’ behavior conditions on their beliefs, firm i only needs to have

a belief about their costs as the public belief is public information. Firm i’s belief in

turn is just a function of its cost and the public belief, closing the loop.

More specifically, consider the posterior expectation about the average firm cost

conditional on the price process Y under a symmetric linear strategy profile. This

public belief is defined as Πt := 1
nE
[∑

j C
j
∣∣FYt ], with corresponding posterior variance

γt := E
[(∑

j C
j − nΠt

)2∣∣FYt ].8 It can be computed using the Kalman filter with Y

as the signal and the sum
∑

j C
j as the unknown parameter (see Lemma A.1 in the

Appendix), and it corresponds to the belief of an outsider who knows the strategy, but

only observes the prices (cf. market makers in Foster and Viswanathan, 1996). We note

for future reference that the posterior variance of the public belief is a deterministic

function of time given by

γt =
ng0

1 + ng0
´ t
0 (αs

σ )2ds
, t ∈ [0, T ]. (5)

The public belief can be used to express private beliefs as follows.

Lemma 2. Under any symmetric linear strategy profile, for each firm i,

M i
t = ztΠt + (1− zt)Ci, t ∈ [0, T ],

where

zt :=
n

n− 1

γMt
γt

=
n2g0

n(n− 1)g0 + γt
∈
[
1,

n

n− 1

]
(6)

is a deterministic nondecreasing function of t.

That is, on the path of play of a symmetric linear strategy profile, each firm’s

private belief M i
t is a weighted average of the public belief Πt and its cost Ci, with the

weight zt a deterministic function of time. Heuristically, Ci captures the firm’s private

information about both its cost and its past outputs (whose private part equals αsC
i

at time s), and hence it is the only additional information the firm has compared to

an outsider observing prices. The functional form comes from the properties of normal

8We use the posterior variance of nΠt for notational convenience.
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distributions, since under linear strategies the system is Gaussian. Moreover, since γMt

is also only a function of time by Lemma 1, the tuple (Ci, Πt, t) is a sufficient statistic

for firm i’s posterior belief at time t.9

If firm i unilaterally deviates, then the formula in Lemma 2 does not apply to its

belief because the public belief Πt assumes that all firms play the same linear strategy.

(The formula still holds for the other firms, because they do not observe the deviation.)

At such off path histories, it is convenient to represent firm i’s belief in terms of a

counterfactual public belief, which corrects for the difference in firm i’s quantities, and

which coincides with Πt if i has not deviated.

Lemma 3. Under any symmetric linear strategy profile and any strategy of firm i,

M i
t = ztΠ̂

i
t + (1− zt)Ci, t ∈ [0, T ],

where zt is as in Lemma 2, and the process Π̂ i is defined by

dΠ̂ i
t = λtαt

(
1 + (n− 1)(1− zt)

)
(Π̂ i

t − Ci)dt+ λtσdZ
i
t , Π̂ i

0 = π0,

where

λt := −αtγt
nσ2

, and dZit :=
dY i

t + (n− 1)αt
(
ztΠ̂

i
t + (1− zt)Ci

)
dt

σ

is a standard Brownian motion (with respect to FY i
) called firm i’s innovation process.

Moreover, if firm i plays on [0, t) the same strategy as the other firms, then Π̂ i
t = Πt.

The counterfactual public belief Π̂ i evolves independently of firm i’s strategy by

construction. However, it is defined in terms of the process Y i defined in (4), and hence

its computation requires knowledge of firm i’s past quantities. Thus Π̂ i
t is in general

firm i’s private information. Nevertheless, if firm i plays the same strategy as the other

firms, then the counterfactual and actual public beliefs coincide (i.e., Π̂ i
t = Πt) and

we obtain Lemma 2 as a special case. In general, however, firm i’s posterior at time t

is captured by (Ci, Π̂ i, t).10

9In fact, each firm i’s entire time-t hierarchy of beliefs is captured by (Ci, Πt, t). For example, firm i’s
first-order belief about firm j’s cost Cj is normal with mean ztΠt + (1 − zt)Ci and variance a function of
γMt , where zt and γMt are only functions of t. Thus to find, say, firm k’s second-order belief about firm i’s
first-order belief about Cj , we only need k’s first-order belief about Ci because (Πt, t) are public. But k
simply believes that Ci is normal with mean ztΠt + (1− zt)Ck and variance a function of γMt . And so on.

10If firm i has deviated from the symmetric linear strategy profile, then its time-t hierarchy of beliefs is
captured by (Ci, Πt, Π̂

i
t , t): its first-order belief uses Π̂i

t instead of Πt, but since each firm j 6= i still forms
its (now biased) beliefs using (Cj , Πt, t), Πt is needed for the computation of higher order beliefs.
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4 Markov Equilibria

In games of complete information, a Markov (perfect) equilibrium requires behavior

to only depend on the payoff-relevant part of history. In our model, only the costs

and calendar time are directly payoff relevant, but because the firms do not know each

others’ costs, it is in general necessary to let behavior to depend on the history through

its effect on the firms’ beliefs about costs. Our Markov restriction is to not allow any

more history dependence than that.

With this motivation, we say that a strategy profile is Markov if each firm’s strategy

depends on the history only through calendar time and the firm’s belief about the

cost vector (C1, . . . , Cn). Based on our analysis in Section 3, we have the following

characterization of symmetric linear Markov strategies.

Lemma 4. A symmetric linear strategy profile is Markov if and only if there exist

functions α, β, δ : [0, T ]→ R, called the coefficients, such that for each firm i,

Qit = αtC
i + βtΠt + δt, t ∈ [0, T ].

That a strategy of this form only conditions on calendar time and firm i’s belief

about costs (including its own) is immediate from the fact that i’s belief is summarized

by (Ci, Πt, t). The other direction combines this representation of beliefs with the

observation that Πt is itself a linear function of history, and hence for a strategy

conditioning on it to be linear in the sense of (3), it has to take the above affine form.

We then define our notion of Markov equilibrium as follows.

Definition 1. A symmetric linear Markov equilibrium is a Nash equilibrium in sym-

metric linear strategies such that (i) the strategy profile is Markov, and (ii) the coeffi-

cients (α, β, δ) of the equilibrium strategy are continuously differentiable.

We identify a symmetric linear Markov equilibrium with the coefficients (α, β, δ) of

the equilibrium strategy. Their differentiability is included in the above definition to

avoid having to keep repeating it as a qualifier in what follows.

We do not require perfection in the definition of Markov equilibria, since given the

full support of the price process Y , the only off-path histories at which a firm can find

itself are those that follow its own deviations. Thus, requiring perfection would not

restrict the set of equilibrium outcomes. Nevertheless, we obtain a partial description

of optimal off-path behavior in our best-response analysis, to which we turn next.

4.1 Best-Response Problem

In order to characterize existence and properties of Markov equilibria, we now explicitly

formulate firm i’s best-response problem to a symmetric linear Markov strategy profile
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as a dynamic stochastic optimization problem.

To this end, fix firm i, and suppose the other firms play a symmetric linear Markov

strategy profile (α, β, δ) with differentiable coefficients. We observe first that the tuple

(Ci, Πt, Π̂
i
t , t) is the relevant state for firm i’s problem. To see this, note that the

integrand in the expected payoff (2) is linear in the other firms’ outputs, and hence firm

i’s flow payoff at time t depends only on the other firms’ expected output conditional

on i’s information. By Lemmas 1 and 4, this is given by (n − 1)(αtM
i
t + βtΠt + δt),

where the private belief satisfies M i
t = ztΠ̂

i
t + (1 − zt)Ci by Lemma 3. Furthermore,

the coefficients (α, β, δ) and the weight z are deterministic functions of time (as are

γ and λ that appear in the laws of motion for Π and Π̂ i). Thus (Ci, Πt, Π̂
i
t , t) fully

summarizes the state of the system.

Using the state (Ci, Πt, Π̂
i
t , t), the normal form of firm i’s best-response problem

can be written as

sup
Qi∈L2[0,T ]

E
[ ˆ T

0
e−rt

[
p̄−Qit − (n− 1)(αtM

i
t + βtΠt + δt)− Ci

]
Qitdt

]
subject to

dΠt = λt[(αt + βt)Πt + δt −Qit + (n− 1)αt(Πt −M i
t )]dt+ λtσdZ

i
t , Π0 = π0,

dΠ̂ i
t = λt[αt(Π̂

i
t − Ci) + (n− 1)αt(Π̂

i
t −M i

t )]dt+ λtσdZ
i
t , Π̂ i

0 = π0,

M i
t = ztΠ̂

i
t + (1− zt)Ci.

The only sources of randomness in the problem are the initial draw of Ci and firm i’s

innovation process Zi defined in Lemma 3, which is a standard Brownian motion.

The law of motion of the public belief Π is simply the dynamic from Lemma A.1

written from firm i’s perspective.11 Conditional on prices, Π is a martingale, but from

i’s perspective it has a drift, which consist of two components. The first component,

(αt + βt)Πt + δt − Qit, captures the difference between the public expectation of firm

i’s output and firm i’s actual output. The second, (n − 1)αt(Πt −M i
t ), captures the

difference between the public’s and firm i’s expectations about the other firms’ outputs

due to firm i’s superior information about their costs. Since Qi enters the drift, firm i

controls the public belief Π. This allows the firm to (noisily) signal its cost and makes

the problem dynamic.

11Noting that under Markov strategies, Bt(Y
t) = βtΠt + δt, we have by Lemma A.1 and equation (4),

dΠt = λt
[
dYt −

(
p̄− αtnΠt − nBt(Y

t)
)
dt
]

= λt
[
dY i

t + (αtnΠt + βtΠt + δt −Qi
t)dt

]
= λt

[
σdZi

t +
(
αtnΠt + βtΠt + δt −Qi

t − αt(n− 1)M i
t

)
dt
]
,

where the last step is by definition of the innovation process Zi := σ−1[dY i + (n− 1)αtM
i
tdt] in Lemma 3.
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The other stochastically evolving state variable, the counterfactual public belief Π̂ i,

evolves exogenously. (Its law of motion is given in Lemma 3.) The interpretation of its

drift is the same as that of Π, except that Π̂ i is calculated assuming that firm i plays

the strategy (α, β, δ) and hence the difference in its expected and realized quantity is

just αt(Π̂
i
t −Ci). Note that d(Πt− Π̂ i

t) = λt[αtn(Πt− Π̂ i
t) +αtC

i + βtΠt + δt−Qit]dt,
from which it is immediate that Πt = Π̂ i

t if firm i has indeed played according to

(α, β, δ) in the past.

Firm i’s best-response problem can be formulated recursively as the Hamilton-

Jacobi-Bellman (HJB) equation

rV (c, π, π̂, t) = sup
q∈R

{[
p̄− q − (n− 1)

(
αt(ztπ̂ + (1− zt)c) + βtπ + δt

)
− c
]
q

+ µt(q)
∂V

∂π
+ µ̂t

∂V

∂π̂
+
∂V

∂t
+
λ2tσ

2

2

(∂2V
∂π2

+ 2
∂2V

∂π∂π̂
+
∂2V

∂π̂2

)}
, (7)

where the drifts of Π and Π̂ i are, as above,

µt(q) := λt
[
(αt + βt)π + δt − q + (n− 1)αt

(
π − (ztπ̂ + (1− zt)c)

)]
,

µ̂t := λtαt
[
1 + (n− 1)(1− zt)

]
(π̂ − c),

written here using Lemma 3 to express firm i’s belief as ztπ̂ + (1− zt)c.
The objective function in the maximization problem on the right-hand side of (7) is

linear-quadratic in q with −q2 the only quadratic term, and thus it is strictly concave.

Therefore, there is a unique maximizer q∗(c, π, π̂, t) given by the first-order condition

q∗(c, π, π̂, t) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2
− λt

2

∂V

∂π
, (8)

where the first term is the myopic best response, and the second term captures the

dynamic incentive to signal.

It is worth noting that here continuous time greatly simplifies the analysis. The

same arguments can be used in discrete time to derive a Bellman equation analogous

to (7). The public belief still enters the flow payoff linearly, so the value function

is convex in π. However, the quantity q then affects the level of π linearly, which

means that the optimization problem in the Bellman equation has a convex term in q.

Moreover, this term involves the value function—an endogenous object—which makes

it hard to establish the existence and uniqueness of an optimal quantity. In contrast,

in continuous time q only affects the drift of π, which in turn affects the value of the

problem linearly. This renders the HJB equation strictly concave in q by inspection.

12



4.2 Characterization

We can view any symmetric linear Markov equilibrium as a solution to the HJB equa-

tion (7) satisfying the fixed point requirement that the optimal policy coincide with the

strategy to which the firm is best responding. This leads to a boundary value problem

characterization of such equilibria, which is the key to our analysis.

More specifically, we proceed as follows. We show first that if (α, β, δ) is a symmetric

linear Markov equilibrium, then the solution to the HJB equation (7) takes the form

V (c, π, π̂, t) = v0(t) + v1(t)π + v2(t)π̂ + v3(t)c+ v4(t)ππ̂

+ v5(t)πc+ v6(t)π̂c+ v7(t)c
2 + v8(t)π

2 + v9(t)π̂
2 (9)

for some differentiable vk : R → R, k = 0, . . . , 9, and a linear optimal policy exists on

and off the path of play.12 Substituting for ∂V/∂π in the first-order condition (8) using

(9), we see that the best response to the equilibrium strategy can be written as

q∗(c, π, π̂, t) = α∗t c+ β∗t π + δ∗t + ξ∗t (π̂ − π).

The fixed point requirement is thus simply that (α∗, β∗, δ∗) = (α, β, δ).

The off-path coefficient ξ∗ is a free parameter given our focus on Nash equilibria,

but this argument shows that optimal off-path behavior is necessarily linear, and that

a best response exists on and off the path of play.

After imposing the fixed point, the HJB equation (7) reduces to a system of ordi-

nary differential equations (ODEs) for the coefficients vk of the value function V and

the posterior variance γ. However, it turns out to be more convenient to consider an

equivalent system of ODEs for γ and the coefficients (α, β, δ, ξ) of the optimal policy

along with the relevant boundary conditions. This identifies symmetric linear Markov

equilibria with solutions to a boundary value problem. A verification argument estab-

lishes the converse.

For a formal statement, define the functions αm, βm, δm, ξm : R→ R by

αm(x) := − (n− 1)ng0 + x

(n− 1)ng0 + (n+ 1)x
, δm(x) :=

p̄

n+ 1
,

βm(x) :=
(n− 1)n2g0

(n+ 1)[(n− 1)ng0 + (n+ 1)x]
, ξm(x) :=

(n− 1)n2g0
2[(n− 1)ng0 + (n+ 1)x]

.

(10)

In the proof of the following result, we show that these are the myopic equilibrium coeffi-

12The proof uses the fact that the best-response problem is a stochastic linear-quadratic regulator (see,
e.g., Yong and Zhou, 1999, Chapter 6). Note that the posterior variance γt depends non-linearly on the
coefficient α, and so do the weight zt and the sensitivity of the public belief to the price, λt = −αtγt/(nσ

2).
Hence, even though the best-response problem is linear-quadratic because it takes α as given, our game is
not a linear-quadratic game in the sense of the literature on differential games (see, e.g., Friedman, 1971).

13



cients given posterior variance x. In particular, firm i’s time-T output under the equilib-

rium best-response policy is QiT = αm(γT )Ci+βm(γT )ΠT+δm(γT )+ξm(γT )(Π̂ i
T−ΠT ).

Recalling from (6) that zt is only a function of the current γt, we have the following

characterization of equilibria.

Theorem 1. (α, β, δ) is a symmetric linear Markov equilibrium with posterior variance

γ if and only if δ = −p̄(α+ β) and there exists ξ such that (α, β, ξ, γ) is a solution to

α̇t = rαt
αt − αm(γt)

αm(γt)
− α2

tβtγt[(n− 1)nαt (zt − 1) + 1]

nσ2
, (11)

β̇t = rαt
(n+ 1)(βm(γt)− βt)

(n+ 1)βm(γt) + 1

+
αtβtγt

[
nαt(n+ 1− (n− 1)zt − (n2 − 1)βt(zt − 1)) + (n− 1)βt

]
n(n+ 1)σ2

, (12)

ξ̇t = rαt
(n+ 1)(ξm(γt)− ξt)

2ξm(γt) + 1

+
αtγtξt
nσ2

[
ξt − (nαt((n− 1)βt(zt − 1)− 1) + βt)

]
− (n− 1)α2

tβtγtzt
2σ2

, (13)

γ̇t = −α
2
t γ

2
t

σ2
, (14)

with boundary conditions αT = αm(γT ), βT = βm(γT ), ξT = ξm(γT ), and γ0 = ng0.

In particular, such an equilibrium exists if and only if the above boundary value

problem has a solution. A sufficient condition for existence is

ng0
σ2

< max
{4r

27
,

1

3T

}
.

The derivation of the boundary value problem for (α, β, ξ, γ) proceeds along the

lines sketched above. This is the standard argument for characterizing solutions to

HJB equations, save for the facts that (i) here we are simultaneously looking for a

fixed point, and hence also the flow payoff is determined endogenously as it depends

on the strategy played by the other firms, and (ii) we derive a system of differential

equations for the optimal policy rather than for the value function.

The identity δ = −p̄(α+ β) provides a surprising, but very welcome, simplification

for equilibrium analysis, and allows us to eliminate δ from the boundary value problem.

A similar relationship holds in a static Cournot oligopoly with complete information

and asymmetric costs.13 We establish the result by direct substitution into the ODE

for δ. Since it is an equilibrium relationship, it doesn’t seem possible to establish it by

only considering the best-response problem even in a static model.

The hard part in the proof of Theorem 1 is establishing existence. This requires

13For example, given n = 2 and demand p = p̄− q1− q2, if we define π = (c1 + c2)/2, then the equilibrium
quantities are qi = aci + bπ + d (i = 1, 2), where a = −1, b = 2/3, and d = p̄/3, and hence d = −p̄(a+ b).
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showing the existence of a solution to the nonlinear boundary value problem defined by

equations (11)–(14) and the relevant boundary conditions. As is well known, there is

no general existence theory for such problems. We thus have to use ad hoc arguments,

which require detailed study of the system’s behavior. On the upside, we obtain as a

by-product a relatively complete description of equilibrium behavior, which we discuss

in the next section. However, due to the complexity of the system, we have not been

able to prove or disprove uniqueness, even though numerical analysis strongly suggests

that a symmetric linear Markov equilibrium is unique whenever it exists. (All the

results to follow apply to every such equilibrium.)

Our existence proof can be sketched as follows. As ξ only enters equation (13),

it is convenient to first omit it from the system and establish existence for the other

three equations. For this we use the so-called shooting method. That is, we choose

a time-T value for γ, denoted γF (mnemonic for final). This determines the time-T

values of α and β by αT = αm(γF ) and βT = βm(γF ). We then follow equations (11),

(12), and (14) backwards in time from T to 0. This gives some γ0, provided that none

of the three equations diverges before time 0. Thus we need to show that γF can be

chosen such that there exists a global solution to (11), (12), and (14) on [0, T ], and the

resulting γ0 satisfies γ0 = ng0. For the latter, note that we have γ0 ≥ γF since γ̇ ≤ 0.

Furthermore, setting γF = 0 yields γ0 = 0. As the system is continuous in the terminal

value γF , this implies that the boundary condition for γ0 is met for some γF ∈ (0, ng0].

The sufficient condition given in the theorem ensures that α and β remain bounded as

we vary γF in this range.

The proof is completed by showing that there exists a solution on [0, T ] to equation

(13), viewed as a quadratic first-order ODE in ξ with time-varying coefficients given

by the solution (α, β, γ) to the other three equations. We use a novel approach where

we first establish the existence of ξ, and hence of equilibria, for g0 sufficiently small,

in which case the system resembles the complete information case. We then observe

that if ξ is the first to diverge as g0 approaches some ḡ0 from below, then some of

the coefficients of the equilibrium value function V in (9) diverge. This allows us to

construct a non-local deviation that is profitable for g0 close enough to ḡ0 and hence

contradicts the existence of an equilibrium for all g0 < ḡ0.

The sufficient condition for existence in Theorem 1 is not tight. Numerical analysis

suggests that equilibria exist for parameters in a somewhat larger range.14 However,

the condition is not redundant either. For example, it is possible to prove that, given

any values for the other parameters, if r = 0, then there exists a sufficiently large but

finite T̄ such that a symmetric linear Markov equilibrium fails to exist for T > T̄ . In

14It is also possible to improve somewhat on the condition given in Theorem 1 analytically. We report the
above bound because of its transparency.
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terms of the decomposition of the firms’ equilibrium incentives provided in the next

section, lack of existence appears to be due to the signaling incentive becoming too

strong. Consistent with this interpretation, the condition given in Theorem 1 becomes

harder to satisfy if r or σ2 decreases, or if g0 or T increases.

5 Equilibrium Properties

We then turn to the properties of equilibrium strategies and implications for prices,

quantities, and profits. We first summarize some properties of the equilibrium coeffi-

cients.

Proposition 1. Let (α, β, δ) be a symmetric linear Markov equilibrium. Then

1. (−αt, βt, δt) ≥ (−αm(γt), β
m(γt), δ

m(γt)) > 0 for all t.

2. α is initially decreasing and β is initially increasing.15

3. δ is eventually decreasing. If T is sufficiently large, then α is eventually increasing

and β is eventually decreasing.

4. If r = 0, then α is quasiconvex, β is quasiconcave, and δ is decreasing.

αt

βt

δt

1 2 3 4 5
t

-1

1

2

3

αt ,βt ,δt

Figure 1: Equilibrium Coefficients, (r, σ, n, p̄, T, g0, ) = (0.1, 1, 2, 5, 5, 2).

The first part of Proposition 1 shows that the equilibrium coefficients are everywhere

larger in absolute value than the myopic equilibrium coefficients (for the current beliefs)

15A function [0, T ]→ R satisfies a property initially if it satisfies it in an open neighborhood of 0. Similarly,
the function satisfies a property eventually if it satisfies it in an open neighborhood of T .
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defined in (10). As the latter are signed and bounded away from zero, so are the

former. In particular, each firm’s output is decreasing in its cost, and increasing in

the public belief. Moreover, by inspection of (11) and (12), the evolution of each

coefficient can heuristically be thought of as being determined by the law of motion for

the undiscounted case and an r-weighted term corresponding to reversion towards the

myopic value.

The second and third part of the proposition imply that the equilibrium coefficients

on private information, α, and on public information, β, are necessarily nonmonotone

for T sufficiently large. As we discuss below, this seemingly surprising pattern is a

natural consequence of learning and signaling. In contrast, the myopic equilibrium

coefficients, which only reflect learning, are monotone: αm(γt) is decreasing, βm(γt) is

increasing, and δm(γt) is constant in t by inspection of (10).

The last part of Proposition 1 completes the qualitative description of equilibrium

coefficients for r = 0, in which case −α and β are single peaked and δ is decreasing.

In fact, numerical analysis suggests that these properties always hold even for r > 0,

but we are not aware of a proof. Figure 1 illustrates a typical equilibrium.

As an immediate corollary to Proposition 1, we obtain a characterization of long-run

behavior. To see this, note that α is bounded away from zero, since αt ≤ αm(γt) ≤ −1/2

for all t, where the second inequality is by definition of αm in (10). By inspection of

(14), this implies that learning will never stop. Fixing all other parameters and letting

T →∞ thus yields the following result.

Corollary 1. For every sequence of symmetric linear Markov equilibria, γT → 0 as

T →∞.

This implies that the public belief converges to the true average cost, and hence

each firm learns its rivals’ average cost, asymptotically as we send the horizon T to

infinity. Because of the identification problem arising from a one-dimensional signal

and symmetric strategies, the firms cannot learn the cost of any given rival when there

are more than two firms. However, with linear demand and constant marginal costs,

knowing the average is sufficient for the firms to play their complete information best

responses even in this case. Thus, under Markov strategies, play converges asymptoti-

cally to the static complete information Nash equilibrium for the realized costs.

Formally, let Qt := (Q1
t , . . . , Q

n
t ), and let qN : Rn → Rn be the Nash equilibrium

map of costs to quantities in the static, complete information version of our model.

Corollary 2. For all ε > 0, there exists T̄ < ∞ such that for all T ≥ T̄ , every

symmetric linear Markov equilibrium satisfies P[‖Qt − qN (C)‖ < ε] > 1 − ε for all t

close enough to T .16

16Here, P denotes the joint law of (C,Qt) under the equilibrium strategies in the game with horizon T .
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For QT the result follows immediately from the convergence of the public belief ΠT

in the same sense since the firms play myopically at the end. The extension to Qt for

t sufficiently large then follows by continuity of the equilibrium coefficients.

5.1 Signaling and Learning

In order to explain the qualitative properties of equilibrium strategies, we consider here

how signaling and learning affect the firms’ incentives. For the deterministic part of

the equilibrium strategy, δ, the intuition is well understood in terms of signal-jamming

in a game with strategic substitutes.17 Indeed, compared to the myopic equilibrium

where δm is constant, the equilibrium δ results in more production with the difference

(eventually) decreasing over time.

For the weights on the own cost and the public belief, i.e., α and β, the intuition

seems less clear at first. From firm i’s perspective, the public belief is not just the

average cost of its rivals, but also includes its own cost. Furthermore, conditioning on

Ci serves two purposes: it accounts both for firm i’s cost of production as well as its

belief about the other firms’ average cost as M i
t = ztΠt + (1− zt)Ci.

To separate these effects, we proceed as follows. Rewrite firm i’s strategy as con-

ditioning explicitly on its cost Ci and its belief M i
t . That is, fix a symmetric linear

Markov equilibrium (α, β, δ), and define α̂t := αt−βt(1−zt)/zt and β̂t := βt/zt. Then,

by Lemma 2, firm i’s equilibrium quantity on the path of play is given by

Qit = αtC
i + βtΠt + δt = α̂tC

i + β̂tM
i
t + δt, t ∈ [0, T ].

Note that α̂t + β̂t = αt + βt, and hence δt = −p̄(α̂t + β̂t).

Consider now the hypothetical problem of firm i that has played according to the

equilibrium strategy up to time t, and is choosing its current output to myopically

maximize its flow payoff. Its myopic time-t best response to the equilibrium strategy

is found by setting ∂V/∂π ≡ 0 in the first-order condition (8). Expressed in terms of

Ci and M i
t as above, this gives Qbrt = α̂brt C

i + β̂brt M
i
t + δbrt , where

α̂brt = −(n− 1)βt(zt − 1)

2zt
− 1

2
, β̂brt = −(n− 1)(βt + αtzt)

2zt
, δbrt =

p̄− (n− 1)δt
2

.

The difference between the equilibrium strategy and the myopic best response, or

Qit −Qbrt = (α̂t − α̂brt )Ci + (β̂t − β̂brt )M i
t + (δt − δbrt ), (15)

is then by construction only due to signaling, or, in the case of δt−δbrt , signal-jamming.

Accordingly, we refer to the coefficients on the right as signaling components.

17See, e.g., Riordan (1985), Fudenberg and Tirole (1986), or Mirman, Samuelson, and Urbano (1993).
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Proposition 2. In every symmetric linear Markov equilibrium, the signaling compo-

nents satisfy

1. α̂t − α̂brt < 0, β̂t − β̂brt > 0, and δt − δbrt > 0 for all 0 ≤ t < T , and we have

α̂T − α̂brT = β̂T − β̂brT = δT − δbrT = 0.

2. If r = 0, then |α̂t − α̂brt |, |β̂t − β̂brt |, and |δt − δbrt | are decreasing in t.18

Armed with Proposition 2, we are now in a position to explain equilibrium signaling

and the nonmonotonicity of the equilibrium coefficients. Note first that the expected

signaling quantity is given by

E[Qit −Qbrt ] = (α̂t − α̂brt )π0 + (β̂t − β̂brt )π0 + (δt − δbrt ) = (δt − δbrt )
(

1− π0
p̄

)
,

where we have used δt = −p̄(α̂t + β̂t) and δbrt = −p̄(α̂brt + β̂brt ). Thus in the relevant

range where π0 < p̄, the expected signaling quantity is positive as the firms are engaging

in excess production in an effort to convince their rivals to scale back production.

Moreover, when r = 0, the expected excess production is monotonically decreasing

over time, reflecting the shorter time left to benefit from any induced reduction in the

rivals’ output, and the fact that beliefs are less sensitive to output when the firms

already have a fairly precise estimate of their rivals’ average cost.

The costs and benefits of signaling depend on firm i’s own cost and its belief about

the other firms’ average cost. In particular, a lower cost first makes it cheaper to pro-

duce additional output and then results in higher additional profits from the expansion

of market share when other firms scale back their outputs in response. This is captured

by the signaling component α̂t − α̂brt multiplying Ci in (15) being negative. If r = 0,

it is decreasing in absolute value over time for the same reasons why the expected

signaling quantity discussed above is decreasing and vanishing at the end.

The existence of the strictly positive signaling component β̂t− β̂brt multiplying firm

i’s belief M i
t in (15) is due to the belief being private. That is, firm i produces more

when it believes that its rivals’ costs are high both because it expects them to not

produce much today (captured by β̂brt > 0), and because by producing more, it signals

to its rivals that it thinks that their costs are high and that it will hence be producing

aggressively in the future. Again, this signaling component is monotone decreasing

over time when r = 0.

Turning to the non-monotonicity of the equilibrium coefficients, consider Figure 2,

which illustrates the equilibrium coefficients α̂ < 0 and β̂ > 0 (black), the coefficients

α̂br < 0 and β̂br > 0 of the myopic best response to the equilibrium strategy (red), the

18As with some of our other results for r = 0, numerical analysis strongly suggests that this result holds
for all r > 0, but proving it appears difficult without the tractability gained by assuming r = 0.
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Figure 2: Learning and Signaling Incentives, (r, σ, n, p̄, T, g0) = (0, 1, 2, 1, 4.1, 2).

signaling components α̂− α̂br ≤ 0 and β̂ − β̂br ≥ 0 (blue), and the implied coefficients

on Ci and M i
t under the myopic equilibrium coefficients in (10) (dashed).

The myopic equilibrium (dashed) reflects only the effect of learning. There, the

weights on own cost and belief are increasing in absolute value. This is best understood

by analogy with a static Cournot game of incomplete information, where each of two

firms privately observes an unbiased signal about its opponent’s cost.19 In this setting,

a higher-cost firm knows that its rival will observe, on average, a higher signal. As the

private signals become more precise, firms assign greater weight to their beliefs about

their rival’s cost. In a setting with strategic substitutes, each firm then consequently

also assigns greater weight to its own cost in response, i.e., a high-cost firm scales back

production further when signals are more precise as it expects its rival to be more

aggressive. This explains why also in the myopic equilibrium of our game, the weights

on Ci and M i
t are increasing in absolute value over time as the firms’ information

becomes more precise (i.e., as γ decreases).

The myopic best reply to the equilibrium strategy (red) reflects these forces, but it

is also affected by the shape of the equilibrium coefficients. As the equilibrium β (and

β̂) is initially much larger than the corresponding weight in the myopic equilibrium,

the myopic best reply initially places a correspondingly higher weight α̂br on the firm’s

own cost, and hence the lower of the two red curves lies below the lower of the dashed

curves. Proposition 1 shows that β is eventually decreasing (for T large enough),

19A similar game is studied in the literature on ex ante information sharing in oligopoly, see Raith (1996).
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which explains why α̂br is eventually slightly increasing in Figure 2. Similarly, as the

equilibrium α (and α̂) is larger than the weight on the cost in the myopic equilibrium,

the price is a more informative signal, and hence β̂br, which is the higher of the two red

curves, lies above the corresponding dashed curve. As the equilibrium α is eventually

increasing by Proposition 1, the opponents’ output becomes eventually less sensitive

to their cost, and the myopic best response then places a smaller weight on the belief

about their cost. This is why β̂br is eventually slightly decreasing in Figure 2.

Finally, the difference between the equilibrium coefficients and those of the myopic

best reply is given by the signaling components α̂− α̂br and β̂− β̂br. They are the two

blue curves in Figure 2, which are decreasing in absolute value by Proposition 2.

Therefore, we see that α̂ and β̂ is the sum of a monotone signaling component, and

of an almost monotone myopic component reflecting learning. Since α̂ and β̂ simply

amount to a decomposition of the equilibrium coefficients α and β, these two effects

are responsible for the non-monotonicity of the latter as well.

The properties of the equilibrium coefficients have immediate implications for sev-

eral outcome variables, which we turn to next.

5.2 Prices and Quantities

The relationship δ = −p̄(α + β) between the coefficients of the equilibrium strategy

from Theorem 1 yields a simple expression for the expected total quantity in the market

conditional on past prices: for any t and s ≥ t, we have

E
[∑

i

Qis | FYt
]

= n(αsΠt + βsΠt + δs) = nδs

(
1− Πt

p̄

)
.

Thus the total expected output inherits the properties of the coefficient δ when Πt ≤ p̄.
(For t = 0 the condition can be satisfied simply by assuming that π0 ≤ p̄; for t > 0 it can

be made to hold with arbitrarily high probability by a judicious choice of parameters.)

Proposition 1 then implies that the total expected output is eventually decreasing in s

(everywhere, if r = 0), and lies everywhere above its terminal value (p̄−Πt)n/(n+ 1),

which by inspection is the complete information Nash total output for an industry with

average cost Πt. That is, if Πt ≤ p̄ (respectively, Πt > p̄), then the expected current

market supply conditional on public information is higher (lower) than the market

supply in a complete information Cournot market with average cost Πt.

In order to describe the behavior of prices, we average out the demand shocks by

defining for any t and s ≥ t the expected price

Et[Ps] := p̄− E
[∑

i

Qis | FYt
]

= p̄− nδs
(

1− Πt

p̄

)
,
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which is just the expected time-s drift of the process Y conditional on its past up to

time t. The above properties of the expected total market quantity then carry over

to the expected price with obvious sign reversals. We record these in the following

proposition, which summarizes some properties of equilibrium outputs and prices.

Proposition 3. The following statements hold for every symmetric linear Markov

equilibrium:

1. If Πt ≤ p̄ (respectively, Πt > p̄), then for all s ≥ t, the expected price Et[Ps] is

lower (respectively, higher) than the complete information equilibrium price in a

Cournot market with average cost Πt. As s→ T , the expected price converges to

the complete information equilibrium price given average cost Πt. If r = 0, then

convergence is monotone. If in addition Πt < p̄, then Et[Ps] is increasing in s.

2. The difference between any two firms’ output levels conditional on their costs,

Qit−Q
j
t = αt(C

i−Cj), is deterministic and, for T sufficiently large, nonmonotone.

3. If r = 0, then the volatility of total output nβtλt is decreasing in t.

1 2 3 4
t

1

2

3

4

5

6

7

p,Qi

Figure 3: Price and Output Paths, (r, σ, n, p̄, T, g0, π0) = (0.75, 0.75, 2, 10, 5, 2, 0).

The first part of Proposition 3 implies that as long as the public belief about the

average cost lies below the demand intercept, then conditional on past prices, future

prices are expected to increase, monotonically so if r = 0. In particular, this is true of

the time-0 expectation as long as π0 ≤ p̄. The finding is illustrated in Figure 3, which

shows simulated price and output paths for two firms with costs (C1, C2) = (1/2, 1/5).

The second part follows simply by definition of Markov strategies and the non-

monotonicity of α for T large. As we discuss further below, it has implications for

productive efficiency and hence for market profitability.
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The last part of Proposition 3 shows that even though β is initially increasing, the

sensitivity of the public belief to output, λ, decreases sufficiently fast if r = 0 so that

the volatility of output is decreasing over time. Interestingly, numerical examples show

that if r > 0, then the volatility of output may be nonmonotone, reaching its maximum

at some interior t.

5.3 Expected Profits

We conclude our discussion of equilibrium properties by considering the implications

of learning and signaling on the firms’ profits. In particular, we are interested in the

ex ante profits accruing to each firm over time, and in their magnitude relative to the

expectation of complete-information profits.

We show in the proof of Proposition 4 below that conditional on the realized costs

C = (C1, . . . , Cn), the distribution of the public belief at time t is normal with

E[Πt | C] = π0
γt
ng0

+
1

n

n∑
j=1

Cj
(

1− γt
ng0

)
, and Var [Πt | C] =

γ2t
n2σ2

(
1

γt
− 1

γ0

)
.

Conditional on the realized costs, firm i’s expected time-t flow profit is given by

(
p̄−Ci − αt

n∑
j=1

Cj − βtnE[Πt | C]− δtn
) (
αtC

i + βtE[Πt | C] + δt
)
− β2t nVar[Πt | C].

Taking an expectation with respect to the costs C, we obtain the firm’s ex ante expected

time-t profit

Wt :=
βtγt((2αt + βt)n+ 1)− g0n

(
n(αt + (αt + βt)

2) + βt
)

n2

− (p̄− π0)2(αt + βt)(n(αt + βt) + 1).

We compare this ex ante profit flow W to the expected flow profit under complete

information, which is given by

W co :=
(p̄− π0)2

(n+ 1)2
+ g0

n2 + n− 1

(n+ 1)2
.

Proposition 4. In every symmetric linear Markov equilibrium,

1. Wt < W co for t = 0 and t = T .

2. If T is sufficiently large and p̄− π0 ≤
√
g0(3 + n(3 + n)), then there exists t < T

such that Wt > W co.

Figure 4 compares the expected profit levels under complete and incomplete infor-
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mation. The left and right panel contrast markets with a low and high mean of the

cost distribution.

5 10 15
t

1

2

3

4

W
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t

0.5

1.0

1.5

W

Figure 4: π0 = 0 (left), π0 = p̄ (right), and (r, σ, n, p̄, T, g0) = (0.2, 1, 2, 5, 15.44, 2).

Consistent with the right panel in Figure 4, the proof of Proposition 4 shows that

expected profits Wt are decreasing for t close to T when the “average profitability of

the market” p̄ − π0 is not very large relative to its variance g0. If, in addition, the

horizon is long enough (so that profits approach the complete-information level) the

function Wt lies above the level W co for some interior times.

To obtain some intuition, we note the two main forces at play. On one hand, as seen

above, signal-jamming adds to the expected total output over myopic players, which

drives down profits. This wasteful spending is (eventually) declining over time by

Proposition 2. On the other hand, learning about costs improves productive efficiency,

and the firms’ active signaling (i.e., α being above its myopic value) increases the speed

at which this happens.

At first sight, it seems that both of the above forces would simply result in the

expected flow profit being increasing over time as in the left panel of Figure 4. But

recall from Proposition 3 that the difference in output between any two firms i and

j conditional on their costs is given by αt(C
i − Cj), which is nonmonotone for T

sufficiently large, because the sensitivity of output to cost, α, is then nonmonotone.

This effect, driven by signaling, enhances productive efficiency in the medium run and

can lead the expected flow profit to surpass the expected complete information profit

at some interior t as in the right panel of Figure 4.

Intuitively, from the ex ante perspective, the enhanced productive efficiency cor-

responds to firms “taking turns” being the market leader, instead of the more even

split of the market under complete information. The condition in the second part of
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Proposition 4 ensures that the “average profitability of the market” is not too high

relative to variance so that this effect is important enough to be noticeable.20

6 Concluding Remarks

Our analysis makes use of a number of simplifying assumptions. The restriction to

a Gaussian information structure and to equilibria in linear strategies (and hence to

quadratic payoffs) is essential for the analysis as it allows us to use the Kalman filter to

derive the firms’ posterior beliefs. Similarly, the representation of each firm’s private

belief as a weighted sum of the public belief and the firm’s cost relies crucially on the

properties of normal distributions.

Symmetry of the prior distribution and that of the equilibrium strategies is impor-

tant for tractability, even though an asymmetric model would present no new concep-

tual issues. However, in an asymmetric model the public belief Πt becomes a vector,

and the analysis of the resulting boundary value problem seems a daunting task.

In contrast, the assumption about independent costs can be easily relaxed, as can

the assumption about private values (as long as the firms only learn about their rivals’

costs from the price). Correlated costs bring qualitatively no new insights. Interdepen-

dent values, modeled as firm i’s cost being the sum Ci+k
∑

j 6=iC
j for some 0 < k ≤ 1,

reduce the incentive to signal, since any given firm having a lower cost implies that the

costs of the other firms are lower as well, and hence induces them to produce more. In

the extreme case of pure common values (k = 1), the firms initially scale back produc-

tion, with the burst of production toward the end resembling the aggressive trading at

the end of the horizon in models of insider trading in financial markets.

The case of pure of common values can alternatively be interpreted as a setting

where costs are known and uncertainty is about the intercept p̄ of the demand function,

of which each firm has received an initial private signal. This also suggests a more

general model with both cost and demand uncertainty similar to Sadzik and Woolnough

(2014) who generalize the model of Kyle (1985) by endowing the insider with private

information about both the fundamental value and the amount of noise traders.

Finally, our model with fixed costs captures in a stylized way a new market where

firms eventually converge to a static equilibrium. It is also of interest to consider

settings where costs vary over time. We pursue these in on-going work.

20In the static literature on ex ante information sharing in oligopoly (see, e.g., Raith, 1996), output is most
sensitive to costs under complete information, while the expected total quantity is constant in the precision
of the information revealed. As a result, sharing full information about costs is beneficial in Cournot models.
Instead, our dynamic model with forward-looking firms introduces the signaling and signal-jamming motives
described in Proposition 2, leading to the richer picture outlined above.
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Appendix

A.1 A Preliminary Lemma

Under symmetric linear strategies, dYt =
(
p̄ − αt

∑
iC

i − nBt(Y
t)
)
dt + σdZt, with

Bt(Y
t) :=

´ t
0 f

t
sdYs+ δt. The following result is standard (Liptser and Shiryaev, 1977).

Lemma A.1. Under any symmetric linear strategy profile, Πt := 1
nE
[∑

j C
j
∣∣FYt ] and

γt := E
[(∑

j C
j − nΠt

)2∣∣FYt ] are given by the unique solution to the system

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y t)

)
dt
]
, Π0 = π0,

γ̇t = −
(αtγt

σ

)2
, γ0 = ng0.

In particular, the solution to the second equation is given by (5).

A.2 Proofs of Lemmas 1 to 4

Proof of Lemma 1. Let e := (1, . . . , 1)′ ∈ Rn−1 be a column vector of ones, and

let I denote the (n − 1) × (n − 1) identity matrix. The argument in the text before

the Lemma shows that firm i’s belief can be found by filtering the (column) vector

C−i := (C1, . . . , Ci−1, Ci+1, . . . , Cn)′ ∼ N (π0e, g0I) from the one-dimensional process

dY i = −αte′C−idt+ σdZt.

By standard formulas for the Kalman filter (see, e.g., Liptser and Shiryaev, 1977,

Theorem 10.2), the posterior mean M−it := E[C−i|FY i

t ] and the posterior covariance

matrix Γt := E[(C−i−M−it )(C−i−M−it )′|FY i

t ] are the unique solutions to the system

dM−it = −αt
σ

Γte
dY −i − αte′M−it dt

σ
, M−i0 = π0e, (A.1)

Γ̇t = −α
2
t

σ2
Γtee

′Γt, Γ0 = g0I, (A.2)

where for Γt uniqueness is in the class of symmetric nonnegative definite matrices.

We first guess and verify the form of the solution for Γt. Let At := Γtee
′Γt. It is

easy to see that its (i, j)-th component satisfies

Aijt =

n−1∑
k=1

Γikt

n−1∑
`=1

Γ`jt .

Thus we guess that the solution takes the form Γii = γ1t , Γijt = γ2t , i 6= j, for some
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functions γ1 and γ2. The matrix equation (A.2) then reduces to the system

γ̇1t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )2, γ10 = g0,

γ̇2t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )2, γ20 = 0.

Consequently, γMt := (n− 1)[γ1t + (n− 2)γ2t ] satisfies

γ̇Mt = −
(αtγMt

σ

)2
, γM0 = (n− 1)g0,

whose solution is

γMt =
(n− 1)g0

1 + (n− 1)g0
´ t
0
α2
s
σ2 ds

.

We can then solve for γ1 and γ2 by noting that γ̇it = γ̇Mt /(n − 1)2 for i = 1, 2, and

hence integration yields

Γiit = γ1t =
γMt

(n− 1)2
+

(n− 2)g0
n− 1

and Γijt = γ2t =
γMt

(n− 1)2
− g0
n− 1

, i 6= j.

It remains to verify that Γt so obtained is nonnegative definite. To this end, note that

γ1t = γ2t + g0, and hence Γt = g0I + γ2tE, where E is a (n− 1)× (n− 1) matrix of ones.

Therefore, for any nonzero (column) vector x ∈ R(n−1) we have

x′Γtx = g0 ‖x‖22 + γ2t ‖x‖
2
1 ≥ ‖x‖

2
1

( g0
n− 1

+ γ2t

)
= ‖x‖21

γMt
(n− 1)2

> 0,

where the first inequality follows from
√
n− 1 ‖x‖2 ≥ ‖x‖1 and the second inequality

from γMt > 0. We conclude that Γt is nonnegative definite, and hence it is indeed our

covariance matrix. By inspection, it is of the form Γt = Γ(γMt ) as desired.

In order to establish the form of the posterior mean, note that (Γte)
i = γMt /(n−1).

Thus (A.1) implies that M−it = M i
te, where M i

t evolves according to

dM i
t = −αt

σ

γMt
n− 1

dY i + αt(n− 1)M i
tdt

σ
, (A.3)

and where

dZit :=
dY i + (n− 1)αtM

i
tdt

σ

is a standard Brownian motion (with respect to FY i
) known as firm i’s innovation

process. It is readily verified that ((n−1)M i
t , γ

M
t ) are the posterior mean and variance

for the problem

dY i
t = −αtνdt+ σdZt, ν ∼ N ((n− 1)π0, (n− 1)g0),
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which amounts to filtering the other firms’ total cost. Thus M i
t is the posterior expec-

tation about the other firms’ average cost as desired.

Proof of Lemma 2. The result is a special case of Lemma 3. (The formula for zt

follows by direct calculation from the formulas for γMt and γt given in Lemma 1 and

equation (5), respectively.)

Proof of Lemma 3. Fix a symmetric linear strategy profile, and let

λt := −αtγt
nσ2

and λMt := − αtγ
M
t

(n− 1)σ2
, t ∈ [0, T ].

Note that zt := nγMt /[(n − 1)γt] = λMt /λt. Recall the law of motion of the private

belief M i in (A.3), and define the process Π̂ i by

Π̂ i
t := exp

(
n

ˆ t

0
λuαudu

)
π0

+

ˆ t

0
exp

(
n

ˆ t

s
λuαudu

)
λs

[
− αs

(
Ci + (n− 1)M i

s

)
ds+

dM i
s

λMt

]
.

The process Π̂ i is in firm i’s information set because it is a function of its belief M i

and cost Ci. We prove the first part of the Lemma by showing that

M i
t − Ci = zt(Π̂

i
t − Ci), t ∈ [0, T ]. (A.4)

To this end, note that the law of motion of Π̂ i is given by

dΠ̂ i
t = λtαt[Π̂

i
t − Ci + (n− 1)(Π̂ i

t −M i
t )]dt+

λt

λMt
dM i

t , Π̂ i
0 = π0. (A.5)

Let Wt := zt(Π̂
i
t − Ci). Applying Ito’s rule and using that ztλt = λMt gives21

dWt = λMt αt[(n− 1)zt − n](Π̂t − Ci)dt+ λMt αt[Π̂t − Ci + (n− 1)(Π̂t −M i
t )]dt+ dM i

t

= (n− 1)λMt αt
[
zt(Π̂t − Ci)− (M i

t − Ci)
]
dt+ dM i

t

= (n− 1)λMt αt
[
Wt − (M i

t − Ci)
]
dt+ dM i

t .

Therefore, we have

d[Wt − (M i
t − Ci)] = (n− 1)λMt αt[Wt − (M i

t − Ci)]dt,
21Observe that

żt =
n

n− 1

γ̇Mt γt − γMt γ̇t
γ2t

= − n

n− 1

α2
t (γMt )2

σ2γt
+ zt

α2
tγt
σ2

= (n− 1)λMt αtzt − nλMt αt,

where we have used that γ̇t = −(αtγt/σ)2 and γ̇Mt = −(αtγ
M
t /σ)2.
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which admits as its unique solution

Wt − (M i
t − Ci) = [W0 − (M i

0 − Ci)] exp
(

(n− 1)

ˆ t

0
λMs αsds

)
.

But W0 − (M i
0 −Ci) = z0(Π̂

i
0 −Ci)− (M i

0 −Ci) = 0, since z0 = 1 and Π̂ i
0 = M i

0 = π0.

Consequently, Wt − (M i
t − Ci) ≡ 0, which establishes (A.4).

The law of motion for Π̂ i given in the Lemma now follows from (A.5) by using

(A.4) to substitute for M i
t , and by using (A.3) to substitute for dM i

t .

It remains to show that Π̂ i
s = Πs if firm i plays the same strategy on [0, s) as the

other firms. Note that then by (4), we have from the perspective of firm i

dYt − (p̄− nBt(Y ))dt = dY i
t − αtCidt = −αt[Ci + (n− 1)M i

t ]dt+
dM i

t

λMt
, t ∈ [0, s),

where the second equality follows by (A.3). Therefore, the law of motion of Π in

Lemma A.1 is from firm i’s perpective given on [0, s) by

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y )

)
dt
]

= λtαt[nΠt − Ci − (n− 1)M i
t ]dt+

λt

λMt
dMt

= λtαt[Πt − Ci + (n− 1)(Πt −Mt)]dt+
λt

λMt
dMt,

with initial condition Π0 = π0. By inspection of (A.5) we thus have Πt = Π̂ i
t for all

t ≤ s. (This also shows that if firm i has ever unilaterally deviated from the symmetric

linear strategy profile in the past, then Π̂ i
t equals the counterfactual value of the public

belief that would have obtained had firm i not deviated.)

Proof of Lemma 4. Lemmas 1 and 2 imply that if all firms are playing a symmetric

linear strategy profile, then there is a one-to-one correspondence between firm i’s time-t

belief about (C1, . . . , Cn) and (Ci, Πt, t). Thus, if

Qit = αtC
i + βtΠt + δt, t ∈ [0, T ],

then firm i’s quantity is only a function of its belief and calendar time. Using the law

of motion from Lemma A.1, it is straightforward to verify that the public belief is of

the form Πt =
´ t
0 k

t
sdYs+ constantt. Thus conditioning on it agrees with our definition

of a linear strategy in (3).

Conversely, suppose that a symmetric linear strategy profile (α, f, δ) is only a func-

tion of beliefs and calendar time. Given the one-to-one correspondence noted above,

29



we then have for each firm i and all t,

Qit = ψt(C
i, Πt)

for some function ψt : R2 → R. Let supp(α) denote the essential support of α on [0, T ],

and let τ := min supp(α). Then private and public beliefs about firms j 6= i are simply

given by the prior at all 0 ≤ t ≤ τ (i.e., Πt = π0, zt = 1, and thus M i
t = π0), and hence

the strategy can only condition on firm i’s (belief about its) own cost and on calendar

time on [0, τ ]. Thus, by linearity of the strategy, we have ψt(C
i, Πt) = αtC

i + δt for

t ≤ τ , which shows that the strategy takes the desired form on this (possibly empty)

subinterval. Note then that for any t > τ , we have

Qit = αtC
i +

ˆ t

0
f tsdYs + δt = ψt(C

i, Πt) = ψt

(
Ci,

ˆ t

0
ktsdYs + constantt

)
,

where the argument of ψt can take on any value in R2 given the distribution of Ci and

the form of the noise in the price process Y . Thus, for the equality to hold, ψt must

be an affine function, i.e., ψt(C
i, Πt) = atC

i + btΠt + dt for some constants (at, bt, dt),

establishing the result.

A.3 Proof of Theorem 1

The proof proceeds as a series of lemmas.

Lemma A.2. If (α, β, δ) is a symmetric linear Markov equilibrium with posterior

variance γ, then (i) (α, β, ξ, γ) with ξ defined by (13) is a solution to the boundary

value problem, and (ii) δ = −p̄(α+ β).

Proof. Fix such an equilibrium (α, β, δ) with variance γ, and fix some firm i. By

inspection, the best-response problem in Section 4.1 is a stochastic linear-quadratic

regulator (e.g., Yong and Zhou, 1999, Chapter 6). Moreover, (α, β, δ) is an optimal

policy (a.s.) on the path of play, i.e., at states where Πt = Π̂ i
t .

We argue first that the value function takes the form given in (9). Along the way,

we also establish the existence of an optimal policy at off-path states (Ci, Πt, Π̂
i
t , t)

where Πt 6= Π̂ i
t . Introducing the shorthand St for the state, we can follow Yong and

Zhou (1999, Chapter 6.4) and write the best-response problem at any state St as an

optimization problem in a Hilbert space where the choice variable is a square-integrable

output process Qi on [t, T ] and the objective function takes the form

1

2

[
〈L1

tQ
i, Qi〉+ 2〈L2

t (St), Q
i〉+ L3

t (St)
]
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for certain linear functionals Lit, i = 1, 2, 3.22 Since an equilibrium exists, the value

of the problem at St is finite, and hence L1
t ≤ 0 by Theorem 4.2 of Yong and Zhou

(1999, p. 308). By the same theorem, if L1
t < 0, then there exists a unique optimal

policy, which is linear in St, and the value function is of the form (9). This leaves the

case L1
t = 0. In that case the objective function is linear in Qi on the vector space of

square-integrable processes, and hence its supremum is unbounded, which contradicts

the existence of an equilibrium, unless L2
t = 0. But if L1

t = L2
t = 0, then any policy is

optimal, and the value function trivially takes the form (9).

We note then that the value function V is continuously differentiable in t and twice

continuously differentiable in (c, π, π̂), and thus it satisfies the HJB equation (7). This

implies that a linear optimal policy q = αtc+βtπ+ δt + ξt(π̂−π), where (αt, βt, δt) are

the equilibrium coefficients, satisfies the first-order condition (8). This gives

αtc+ βtπ + δt + ξt(π̂ − π) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2

− λt
v1(t) + v4(t)π̂ + v5(t)c+ 2v8(t)π

2
,

where we have written out ∂V/∂π using (9). As this equality holds for all (c, π, π̂) ∈ R3,

we can match the coefficients of c, π, π̂, and constants on both sides to obtain the system

αt = −(n− 1)αt(1− zt) + 1

2
+
αtγt
2nσ2

v5(t),

βt − ξt = −(n− 1)βt
2

+
αtγt
nσ2

v8(t),

δt =
p̄− (n− 1)δt

2
+
αtγt
2nσ2

v1(t),

ξt = −(n− 1)αtzt
2

+
αtγt
2nσ2

v4(t),

(A.6)

where we have used λt = −αtγt/(nσ2).
We can now show that (α, β, ξ, γ) satisfy the boundary conditions given in the

theorem. Note that vk(T ) = 0, k = 1, . . . , 9. Thus we obtain (αT , βT , δT , ξT ) from

(A.6) by solving the system with (v1(T ), v4(T ), v5(T ), v8(T )) = (0, . . . , 0). Recalling

the expression for zT in terms of γT from (6), a straightforward calculation yields

αT = αm(γT ), βT = βm(γT ), δT = δm(γT ), and ξT = ξm(γT ), where the functions

(αm, βm, δm, ξm) are defined in (10). The condition γ0 = ng0 is immediate from (5).

As γ satisfies (14) by construction, it remains to show that (α, β, ξ, γ) satisfy equa-

tions (11)–(13) and that δ = −p̄(α + β). Applying the envelope theorem to the HJB

22Cf. display (4.17) on page 307 in Yong and Zhou (1999).

31



equation (7) we have

r
∂V

∂π
= −(n− 1)βtq

∗(c, π, π̂, t) + µt
∂2V

∂π2
+
∂µt
∂π

∂V

∂π
+ µ̂t

∂2V

∂π∂π̂
+
∂2V

∂π∂t
, (A.7)

where we omit third-derivative terms as V is quadratic. By inspection of (9), the

only coefficients of V that enter this equation are v1(t), v4(t), v5(t), and v8(t) as

well as their derivatives v̇1(t), v̇4(t), v̇5(t), and v̇8(t). Therefore, we first solve (A.6)

for (v1(t), v4(t), v5(t), v8(t)) in terms of (αt, βt, δt, ξt, γt), and then differentiate the re-

sulting expressions to obtain (v̇1(t), v̇4(t), v̇5(t), v̇8(t)) in terms of (αt, βt, δt, ξt, γt) and

(α̇t, β̇t, δ̇t, ξ̇t, γ̇t). (Note that (A.6) holds for all t and the strategy is differentiable by

assumption.) Substituting into (A.7) then yields an equation for (αt, βt, δt, ξt, γt) and

(α̇t, β̇t, δ̇t, ξ̇t, γ̇t) in terms of (c, π, π̂) and the parameters of the model. Moreover, as

this equation holds for all (c, π, π̂) ∈ R3, we can again match coefficients to obtain a

system of four equations that are linear in (α̇t, β̇t, δ̇t, ξ̇t). A very tedious but straight-

forward calculation shows that these equations, solved for (α̇t, β̇t, δ̇t, ξ̇t), are equations

(11)–(13) and

δ̇t = rαt
δt − δm(γt)

αm(γt)
+

(n− 1)αtβtγt
n(n+ 1)σ2

[
δt − nαt(zt − 1)((n+ 1)δt − p̄)

]
. (A.8)

The identity δ = −p̄(α + β) can be verified by substituting into (A.8) and using (11)

and (12), and noting that the boundary conditions satisfy it by inspection of (10).

Lemma A.3. If (α, β, ξ, γ) is a solution to the boundary value problem, then (α, β, δ)

with δ = −p̄(α+β) is a symmetric linear Markov equilibrium with posterior variance γ.

Proof. Suppose that (α, β, ξ, γ) is a solution to the boundary value problem and let

δ = −p̄(α + β). Then (α, β, δ) are bounded functions on [0, T ], and hence they define

an admissible symmetric linear Markov strategy (see footnote 7 on page 6). Moreover,

(5) is the unique solution to (14) with γ0 = ng0, and hence γ is the corresponding

posterior variance of the public belief.

To prove the claim, we assume that the other firms play according to (α, β, δ), and

we construct a solution V to firm i’s HJB equation (7) such that V takes the form (9)

and the optimal policy is q∗(c, π, π̂, t) = αtc + βtπ + δt + ξt(π̂ − π). We then use a

verification theorem to conclude that this indeed constitutes a solution to firm i’s best

response problem.

We construct V as follows. By Proposition 1, (α, β, δ, ξ) are bounded away from 0,

and so is γ because T is finite.23 We can thus define (v1, v4, v5, v8) by (A.6). Then, by

construction, q∗(c, π, π̂, t) = αtc+βtπ+ δt + ξt(π̂−π) satisfies the first-order condition

(8), which is sufficient for optimality by concavity of the objective function in (7).

23For ξ, this follows from ξt ≥ ξmt := ξm(γt) > 0. The second inequality is by (10). To see the first, notice
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The remaining functions (v0, v2, v3, v6, v7, v9) can be obtained from (7) by substituting

the optimal policy q∗(c, π, π̂, t) for q on the right-hand side and matching the coeffi-

cients of (c, π̂, cπ̂, c2, π̂2) and the constants on both sides of the equation so obtained.

This defines a system of six linear first-order ODEs (with time-varying coefficients) for

(v0, v2, v3, v6, v7, v9), stated here for future reference:

v̇0(t) = rv0(t)− δt(p̄− nδt)−
α2
t γ

2
t

n2σ2
v9(t)−

αtγt(nβt + βt + 2ξt) + 2(n− 1)α2
t γtzt

2n
,

v̇2(t) = (n− 1)αtzt (p̄− nδt) +
nrσ2 + α2

t γt (n (1− zt) + zt)

nσ2
v2(t),

v̇3(t) = (n− 1)αt(zt − 1)(nδt − p̄) + rv3(t) + δt +
α2
t γt((n− 1)zt − n)

nσ2
v2(t),

v̇6(t) =
nrσ2 + α2

t γt(n(1− zt) + zt)

nσ2
v6(t) +

2α2
t γt((n− 1)zt − n)

nσ2
v9(t) (A.9)

+ αt
(
−2nξt − (n− 1)zt(2nαt − 2ξt + 1) + 2(n− 1)2αtz

2
t

)
,

v̇7(t) = rv7(t) + αt(n− 1)(zt − 1)− α2
t (n(1− zt) + zt)

2 +
α2
t γt((n− 1)zt − n)

nσ2
v6(t),

v̇9(t) =
nrσ2 + 2α2

t γt(n(1− zt) + zt)

nσ2
v9(t)− ((n− 1)αtzt + ξt)

2.

By linearity, the system has a unique solution on [0, T ] that satisfies the boundary

condition (v0(T ), v2(T ), v3(T ), v6(T ), v7(T ), v9(T )) = (0, . . . , 0). Defining V by (9) with

the functions vk, k = 1, . . . , 9, defined above then solves the HJB equation (7) by

construction.

Finally, because V is linear-quadratic in (c, π, π̂) and the functions vk are uniformly

bounded, V satisfies the quadratic growth condition in Theorem 3.5.2 of Pham (2009).

Therefore, V is indeed firm i’s value function and (α, β, δ, ξ) is an optimal policy.

Moreover, on-path behavior is given by (α, β, δ) as desired.

We then turn to existence. As discussed in the text following the theorem, we use

the shooting method, omitting first equation (13) from the system.

Define the backward system as the initial value problem defined by (11), (12), and

(14) with γT = γF , αT = αm(γF ), and βT = βm(γF ) for some γF ∈ R+. By inspection,

the backward system is locally Lipschitz continuous (note that g0 > 0 by definition).

For γF = 0, its unique solution on [0, T ] is given by αt = αm(0), βt = βm(0), and γt = 0

for all t. By continuity, it thus has a solution on [0, T ] for all γF in some interval [0, γ̃F )

with γ̃F > 0. Let G := [0, γ̄F ) be the maximal such interval with respect to set inclu-

that ξ̇t is decreasing in βt. Therefore, bounding βt with βm
t by Proposition 1, we obtain

(βt, ξt) = (βm
t , ξ

m
t )⇒ ξ̇t − ξ̇mt = − g20(n− 1)3n3αt(2αt − 1)γt

4(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)2
≤ 0,

because αt < αm
t ≤ −1/2 for all t by Proposition 1. This implies that ξ can only cross its myopic value from

above, which occurs at time t = T .
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sion. (I.e., γ̄F = sup {γ̃F ∈ R+ : backward system has a solution for all γF ∈ [0, γ̃F )}.)

Lemma A.4. If ng0/σ
2 < max{4r/27, 1/(3T )}, then there exists γF ∈ G such that

the solution to the backward system satisfies γ0 = ng0.

Proof. Let
ng0
σ2

< max
{4r

27
,

1

3T

}
.

The backward system is continuous in γF , and γF = 0 results in γ0 = 0. Thus it suffices

to show that γ0 ≥ ng0 for some γF ∈ G. Suppose, in negation, that the solution to the

backward system has γ0 < ng0 for all γF ∈ G. Since γ is monotone by inspection of

(14), we then have γF = γT ≤ γ0 < ng0 for all γF ∈ G, and thus γ̄F ≤ ng0 < ∞. We

will show that this implies that the solutions (α, β, γ) are bounded uniformly in γF on

G, which contradicts the fact that, by definition of G, one of them diverges at some

t ∈ [0, T ) when γF = γ̄F .

To this end, let γF ∈ G, and let (α, β, γ) be the solution to the backward system.

By monotonicity of γ, we have 0 ≤ γt ≤ γ0 < ng0 for all t, and hence γ is bounded

uniformly across γF in G as desired.

Note then that, by the arguments in the proof of the first part of Proposition 1

below, we have (−α, β, δ) ≥ 0. The identity −p̄(α + β) = δ then implies α ≤ −β ≤ 0.

Therefore, to bound α and β, it suffices to bound α from below.

Let ρ := ng0/σ
2, and let ψ(a) := −ra(a+ 1) + ρa4 for any a ∈ R. Consider

ẋt = ψ(xt), xT = −1. (A.10)

By (10), we have xT ≤ αm(γF ) = αT for all γF ≥ 0. Furthermore, recalling that

γt ≤ ng0, zt ∈ [1, n/(n − 1)], and −αt ≥ βt ≥ 0 for all t, we can verify using equation

(11) that ψ(αt) ≥ α̇t for all αt ≤ 0. Working backwards from T , this implies xt ≤ αt

for all t at which xt exists. Furthermore, the function x is by definition independent

of γF , so to complete the proof, it suffices to show that (A.10) has a solution on [0, T ].

Suppose first that ρ ≤ 4r/27. A routine calculation then reveals that we have

min{r(a + 1) − ρa3 : a ≤ −1} ≤ 0, which is achieved at some ā < −1. Thus, we have

ψ(ā) ≤ 0 < ψ(−1), and there exists a∗ ∈ [ā,−1] such that ψ(a∗) = 0. But this implies

that the solution x to (A.10) satisfies a∗ ≤ xt ≤ −1 for all t, and it can therefore be

extended to all of [0, T ] as desired.

Suppose then that ρ < 1/(3T ). Note that ρa4 ≥ ψ(a) for all a ≤ −1. Therefore,

working backwards from T , x is bounded from below by y defined by

ẏt = ρy4t , yT = −1.
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The unique solution is

yt =
1

3
√

3ρ(T − t)− 1
, (A.11)

which exists on all of [0, T ], since 3ρ(T − t)− 1 ≤ 3ρT − 1 < 0.

Lemma A.4 shows that there exists a solution (α, β, γ) to equations (11), (12), and

(14) satisfying boundary conditions αT = αm(γT ), βT = βm(γT ), and γ0 = ng0 when

ng0/σ
2 < max{4r/27, 1/(3T )}. Therefore, it only remains to establish the following:

Lemma A.5. Let ng0/σ
2 < max{4r/27, 1/(3T )}, and let (α, β, γ) be a solution to

equations (11), (12), and (14) with αT = αm(γT ), βT = βm(γT ), and γ0 = ng0. Then

there exists a solution ξ to equation (13) on [0, T ] with ξT = ξm(γT ).

Proof. Let g0 < max{4rσ2/(27n), σ2/(3nT )} and let (α, β, γ) be as given in the

lemma. We first establish the result for all g0 > 0 sufficiently small.

Recall that for any g0 < σ2/(3nT ) we can bound α from below by y given in (A.11).

In particular, for g0 ≤ 7σ2/(24nT ), we have

0 ≥ αt ≥ yt =
1

3

√
3ng0
σ2 (T − t)− 1

≥ 1

3

√
3ng0T
σ2 − 1

≥ −2.

Combining this with 0 ≤ γt ≤ γ0 = ng0, we see that the coefficient on ξ2t in (13),

αtγt/(nσ
2), is bounded in absolute value by 2g0/σ

2. Thus for any g0 small enough,

(13) is approximately linear in ξt and hence it has a solution on [0, T ].

Define now ḡ0 as the supremum over g̃0 such that a solution to the boundary value

problem exists for all g0 ∈ (0, g̃0). By the previous argument, ḡ0 > 0. We complete the

proof of the lemma by showing that ḡ0 ≥ max{4rσ2/(27n), σ2/(3nT )}.
Suppose towards contradiction that ḡ0 < max{4rσ2/(27n), σ2/(3nT )}. Then for

g0 = ḡ0 there exists a solution (α, β, γ) to (11), (12), and (14) satisfying the boundary

conditions by Lemma A.4, but following equation (13) backwards from ξT = ξm(γT )

yields a function ξ that diverges to ∞ at some τ ∈ [0, T ). We assume τ > 0 without

loss of generality, since if limt↓0 ξt =∞, then ξt can be taken to be arbitrarily large for

t > 0 small enough, which is all that is needed in what follows.

Since the boundary value problem has a solution for all g0 < ḡ0, a symmetric linear

Markov equilibrium exists for all g0 < ḡ0. So fix any such g0 and any firm i. The firm’s

equilibrium continuation payoff at time s < τ given state (Ci, Πs, Π̂
i
s, s) = (0, 0, 0, s) is

V (0, 0, 0, s) = v0(s). Total equilibrium profits are bounded from above by the (finite)

profit of an omniscient planner operating all the firms, and hence v0(s) is bounded from

above by the expectation of the planner’s profit conditional on Ci = Πs = Π̂ i
s = 0 and

γs. The expectation depends in general on g0 (through γs and zs), but we obtain a

uniform bound by taking the supremum over g0 ≤ ḡ0. Denote this bound by B.
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Let ∆ > 0, and suppose firm i deviates and produces Qit = βtΠt + δt − ∆ for all

t ∈ [s, τ), and then reverts back to the equilibrium strategy at τ . Then d(Πt − Π̂ i
t) =

λt[αtn(Πt − Π̂ i
t) + ∆]dt (see Section 4.1), and hence

Πτ − Π̂ i
τ = ∆

ˆ τ

s
exp

(
−
ˆ t

τ
λuαundu

)
dt > 0. (A.12)

Since Π and Qi still have linear dynamics on [s, τ), their expectation and variance are

bounded, and hence so is firm i’s expected payoff from this interval. Moreover, since

(α, β, γ) (and hence also δ = −p̄(α + β)) exist and are continuous in g0 at ḡ0, the

supremum of this expected payoff over g0 ≤ ḡ0 is then also finite.

Firm i’s continuation payoff from reverting back to the equilibrium best-response

policy (α, β, δ, ξ) at time τ is given by

V (0, π, π̂, τ) = v0(τ) + v1(τ)π + v2(τ)π̂ + v4(τ)ππ̂ + v8(τ)π2 + v9(τ)π̂2 ≥ 0,

where the inequality follows, since the firm can always guarantee zero profits by pro-

ducing nothing. By inspection of (A.6) and (A.9), we observe that

(i) v4(τ) ∝ −ξτ and v8(τ) ∝ ξτ ;

(ii) v1(τ) and v2(τ) are independent of ξ;

(iii) v9(τ) depends on ξ, but is either finite or tends to ∞ as ξ grows without bound;

(iv) v0(τ) = V (0, 0, 0, τ) ≥ 0.

Therefore, letting g0 → ḡ0 and hence ξτ →∞, we have for all π > 0 ≥ π̂,

V (0, π, π̂, τ)→∞.

Moreover, such pairs (π, π̂) have strictly positive probability under the deviation by

(A.12), because Π̂ i is an exogenous Gaussian process. Together with the lower bound

V (0, π, π̂, τ) ≥ 0 for all (π, π̂) this implies that the time-s expectation of the deviation

payoff tends to infinity as g0 → ḡ0, and hence it dominates B for g0 close enough to

ḡ0. But this contradicts the fact that a symmetric linear Markov equilibrium exist for

all g0 < ḡ0.

A.4 Proofs for Section 5

Proof of Proposition 1. (1.) Consider a symmetric linear Markov equilibrium

(α, β, δ) with posterior variance γ. Denote the myopic equilibrium values by

(αmt , β
m
t , δ

m
t ) :=

(
αm(γt), β

m(γt), δ
m(γt)

)
.
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By Theorem 1, (α, β) are a part of a solution to the boundary value problem, and

hence δ satisfies (A.8). The boundary conditions require that αT = αmT < 0 and

βT = βmT > 0. We first show that α ≤ 0 for all t. This is immediate, since αT < 0 and

α̇t = 0 if αt = 0. Next, we show that δt lies everywhere above its (constant) myopic

value δmt . To establish this, notice that δT = δmT , and δ̇T < 0 by (A.8). Furthermore

δt = δmt ⇒ δ̇t − δ̇mt =
(n− 1)pαtβtγt
n(n+ 1)2σ2

≤ 0.

Now suppose towards a contradiction that βt crosses βmt from below at some t < T .

Then evaluate β̇t at the crossing point and obtain

βt = βmt ⇒ β̇t − β̇mt = − g20(n− 1)3n3αtγt((n+ 1)αt − 1)

(n+ 1)3σ2(g0(n− 1)n+ (n+ 1)γt)2
< 0,

a contradiction. Therefore βt ≥ βmt .

The results shown above (αt ≤ 0, δt/p̄ = −αt−βt ≥ 1/(n+ 1), and βt ≥ βmt ) imply

that, if for some t, αt = αmt , then also βt = βmt , since −αmt − βmt = 1/(n + 1). Using

this we evaluate α̇t at αt = αmt to obtain

(αt, βt) = (αmt , β
m
t )⇒ α̇t − α̇mt =

g0(n− 1)2nγt(g0(n− 1)n+ γt)
3

(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)4
> 0,

which establishes αt ≤ αmt for all t.

(2.) At time 0, our boundary conditions imply γ0 = ng0. Substituting into α̇t and β̇t,

we obtain

α̇0 = −r(2α0 + 1)α0 −
g0α

2
0β0
σ2

< 0,

since both terms are negative. Similarly, we have

β̇0 =
rα0 (n− 1− 2(n+ 1)β0)

n+ 1
+
g0α0β0 (2nα0 + (n− 1)β0)

(n+ 1)σ2
> 0,

since n ≥ 2, αt + βt < 0, and βt > βmt .

(3.) That δ is eventually decreasing follows by evaluating (A.8) at t = T using the

boundary condition δT = δmT and signing the terms using part (1.).

Evaluate the slopes of αt and βt at t = T . Let zT = n2g0/ (n(n− 1)g0 + γT ), and

substitute the boundary conditions (αT , βT ) = (αmT , β
m
T ). We obtain

α̇T =
(n− 1)γT zT

(
(n2 − 1)zT − n2 − 1

)
n(n+ 1)σ2 (n+ 1− zT (n− 1))4

,

β̇T =
(n− 1)γT zT

(
(n− 1)3z2T − (n+ 1)(n(n+ 4)− 1)(n− 1)zT + n(n+ 1)3

)
n(n+ 1)3σ2 (n+ 1− zT (n− 1))4

.
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Note that as γT → 0 and hence zT → n
n−1 , we have α̇T → (n−1)γT

(n+1)σ2 > 0 and β̇T →

−n(n2+n−2)γT
(n+1)3σ2 < 0. Finally, because |αt| is bounded away from zero at all t, we have

γT → 0 as T →∞.

(4.) If r = 0, (A.8) simplifies to

δ̇t =
(n− 1)αtβtγt (δt − nαt (zt − 1) ((n+ 1)δt − p̄))

n(n+ 1)σ2
< 0,

since αt < 0 and (n+ 1)δt ≥ p̄ = (n+ 1)δmt by part (1.).

Now consider the second time derivative α̈t, and evaluate it at a critical point of

αt. Solving α̇t = 0 for g0 and substituting into the second derivative, we obtain

α̈t = −α
3
tβtγ

2
t (nαt + 1) ((n− 1)nαt − 1)

n3σ4
> 0,

since n ≥ 2 and αt ≤ −1/2.

Finally, evaluate β̈t at a critical point of βt. For r = 0, the derivative of βt can be

written as

β̇t =
αtβtγt

n(n+ 1)σ2
[
nαt
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ (n− 1)βt

]
.

At a critical point, the term in parentheses is nil. Since αt < 0, the second derivative

β̈t is then proportional to

−α̇t
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ αtżt

(
n− 1 + (n2 − 1)βt

)
.

We know zt is strictly increasing, αt < 0, and the last term in parentheses is positive.

Furthermore, β̇t = 0 implies
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
> 0. Finally,

δt = −p̄(αt+βt) from Theorem 1 implies that αt is strictly increasing at a critical point

of βt. Therefore, both terms in β̈t are negative, which establishes the quasiconcavity

result.

Proof of Proposition 2. (1.) The signaling components obviously vanish at T as

then also the equilibrium play is myopic. Evaluate the slope of α̂ and α̂br at t = T .

We obtain

˙̂αT − ˙̂αbrT = − γT (n− 1)2zT ((n− 1)zT − 2n)

2n(n+ 1)2σ2 (−(n− 1)zT + n+ 1)3
> 0,

since zT ≤ n/(n − 1) implies both that the numerator is negative and that the de-

nominator is positive. Because α̂T = α̂brT , the signaling component α̂t − α̂brt is thus

negative in a neighborhood of T . Now solve α̂t = α̂brt for zt and substitute the resulting
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expression into ˙̂αt − ˙̂αbrt . We obtain,

α̂t = α̂brt ⇒ ˙̂αt − ˙̂αbrt =
(n− 1)αtβtγt ((n− 1)αt − 1)

2n(n+ 1)σ2
> 0.

Thus, if α̂t − α̂brt = 0 for some t < T , then the signaling component crosses zero from

below at t, contradicting the fact that it is negative for all t close enough to T . We

conclude that α̂t − α̂brt > 0 for all t < T .

Now evaluate the slope of β̂ and β̂br at t = T . We obtain

˙̂
βT − ˙̂

βbrT = − γT (n− 1)3zT
2n(n+ 1)2σ2 (n (−zT ) + n+ zT + 1) 3

< 0.

Because β̂T = β̂brT , the signaling component β̂t− β̂brt is positive in a neighborhood of T .

Solve β̂t = β̂brt for zt and substitute the resulting expression into
˙̂
βt − ˙̂

βbrt . We obtain,

β̂t = β̂brt ⇒
˙̂
βt − ˙̂

βbrt = −(n− 1)2α2
tβtγt

2n(n+ 1)σ2
< 0.

Thus, if the signaling component β̂t − β̂brt ever crosses zero it does so from above,

contradicting the fact that it is positive at t = T .

Direct calculation yields δt−δbrt = 1
2((n+1)δt− p̄) ≥ 0, where the inequality follows

since δt ≥ δm(γt) = p̄/(n+ 1) by Proposition 1.1 and (10). Furthermore, by inspection

of (A.8), δ̇t < 0 if δt = δm(γt), and thus δt > p̄/(n+ 1) for all t < T .

(2.) Consider α̂t − α̂brt , and suppose there exists a time t for which the signaling

component has a slope of zero. Impose r = 0, solve ˙̂αt − ˙̂αbrt = 0 for βt, and substitute

into α̂t − α̂brt . We obtain

α̂t − α̂brt =
(n− 1)αt − 1

2n(n+ 1)αt (zt − 1)− 2
> 0,

contradicting our finding that α̂t ≤ α̂brt for all t.

Likewise, we know the signaling component β̂t − β̂brt is decreasing at t = T . Now

impose r = 0, and consider the slope
˙̂
βt − ˙̂

βbrt at an arbitrary t. We obtain

˙̂
βt − ˙̂

βbrt = −(n− 1)αtβtγt (nαt (zt − 1) ((n+ 1)βt + (n− 1)αtzt)− βt)
2nσ2zt

.

If the slope of the signaling component satisfies
˙̂
βt ≥ ˙̂

βbrt , then it must be that (n +

1)βt + (n− 1)αtzt ≤ 0. However, the level of the signaling component is given by

β̂t − β̂brt =
(n+ 1)βt + (n− 1)αtzt

2zt
.
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Consider the largest t for which the signaling component has a slope of zero. Then

the signaling component must be negative at that point. This contradicts our earlier

finding that the signaling component is positive and decreasing in a neighborhood of

T . Therefore,
˙̂
βt <

˙̂
βbrt for all t.

Since δt − δbrt = 1
2((n+ 1)δt − p̄), the claim follows by Proposition 1.4.

Proof of Proposition 3. (1.) The result follows from the properties of the expected

total output established in the text before the proposition.

(2.) Firm i’s output on the equilibrium path is given by Qit = αtC
i + βtΠt + δt.

Therefore, for any i and j 6= i, we have Qit − Q
j
t = αt(C

i − Cj). Proposition 1 shows

that α is nonmonotone for T sufficiently large.

(3.) Using the fact that λt ∝ −αtγt, differentiate βtλt with respect to time. We obtain

β̇tλt + λ̇tβt = −
α2
tβtγ

2
t

[
−2βt(n(n2 − 1)αt(zt − 1) + 1)− (n− 1)nαtzt

]
n(n+ 1)σ2

.

Note that the right-hand side is negative if and only if the term in the brackets is

positive. Use the fact that z ≥ 1 and that −α > β to bound this term as follows:

−2βt(n(n2−1)αt(zt−1)+1)−(n−1)nαtzt > −2βt−(n−1)nαt > (n(n−1)−2)βt ≥ 0,

which completes the proof.

Proof of Proposition 4. We begin by constructing the distribution of Πt under

the true data-generating process. Substituting the equilibrium strategies into the law

of motion for Πt in Lemma A.1, we obtain dΠt = λtαt(nΠt −
∑

iC
i)dt+ λtσdZt, or

Πt = π0 exp
(ˆ t

0
nλtαsds

)
−
∑
i

Ci
ˆ t

0
λsαs exp

( ˆ t

s
nλuαudu

)
ds

+ σ

ˆ t

0
λs exp

(ˆ t

s
nλuαudu

)
dZs.

We conclude that conditional on C, Πt is normally distributed with mean

E[Πt | C] = π0 exp
(ˆ t

0
nλtαsds

)
−
∑
i

Ci
ˆ t

0
λsαs exp

(ˆ t

s
nλuαudu

)
ds,

and variance

Var[Πt | C] = σ2
ˆ t

0
λ2s exp

(
2

ˆ t

s
nλuαudu

)
ds.

Recall also that nαtλt = γ̇t/γt, and hence exp(
´ t
s nλuαudu) = γt/γs. We thus have

E[Πt | C] = π0
γt
γ0
−
∑
i

Ci
1

n

ˆ t

0

γ̇s
γs

γt
γs
ds = π0

γt
γ0
− 1

n

∑
i

Ciγt

(
1

γ0
− 1

γt

)
,
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and

Var[Πt | C] = − 1

n2

ˆ t

0
γ̇s
γ2t
γ2s
ds =

1

n2
γ2t

(
1

γt
− 1

γ0

)
.

(1.) Recalling that γ0 = ng0, we have

W0 −W co =− g0
[
n2 + n− 1

(n+ 1)2
+ αt(αt + 1)

]
+ (p− π0)2

[
− (αt + βt)(n(αt + βt) + 1)− 1

(n+ 1)2

]
.

Because n ≥ 2 and αt ≤ 1/2, the coefficient on g0 is negative. The coefficient on p̄−π0
is negative as well because αt + βt ≤ 1/(n+ 1). Similarly, using the terminal values of

the equilibrium coefficients, we have

WT −W co = −
g0(n− 1)nγT

[
g0n(2n2 + n− 3) + (n+ 1)(n+ 3)γT

]
[g0n(n2 − 1) + (n+ 1)2γT ]2

, (A.13)

which is negative because the coefficient on g0 inside the brackets is positive for n ≥ 2.

(2.) Fix the horizon T and let γT denote the equilibrium terminal value of the posterior

variance γ. Make the change of variable t → γt and rewrite the difference in profits

Wt −W co as a function f(γ; γT ) := W (γ)−W co. We obtain

f(γ; γT ) =
β(γ)γ[(2α(γ) + β(γ))n+ 1]− g0n

[
n
(
α(γ) + (α(γ) + β(γ))2

)
+ β(γ)

]
n2

− (p̄− π0)2
[
(α(γ) + β(γ))(n(α(γ) + β(γ)) + 1) + (n+ 1)−2

]
− g0(n

2 + n− 1)

(n+ 1)2
.

Now consider the terminal value of the difference in profits, i.e., f(γT , γT ). By (A.13),

we have f(0; 0) = 0. Moreover, a somewhat tedious but straightforward calculation

reveals that the partial derivative of f with respect to its first argument evaluated at

(γT , γT ), or ∂f(γT ; γT )/∂γ, diverges to +∞ as γT → 0 iff

g0(n(n+ 3) + 3)− (p− π0)2 ≥ 0,

which is the condition given in the statement of the proposition. If the condition holds,

we then have f(γ, γ′T ) > 0 for some γ > γ′T > 0 small enough by continuity. The result

now follows by noting that γT can be made arbitrarily small by choosing T large enough

by Corollary 1.
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