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Abstract

Many countries use college-major-speci�c admissions policies that require a

student to choose a college-major pair jointly. Motivated by potential student-

major mismatches, we explore the equilibrium e¤ects of postponing student

choice of major. We develop a sorting equilibrium model under the college-major-

speci�c admissions regime, allowing for match uncertainty and peer e¤ects. We

estimate the model using Chilean data. We introduce the counterfactual regime

as a Stackelberg game in which a social planner chooses college-speci�c admis-

sions policies and students make enrollment decisions, learn about their �ts to

various majors before choosing one. We compare outcomes and welfare under

the two di¤erent regimes.
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1 Introduction

In countries such as Canada and the U.S., students are admitted to colleges without

declaring their majors until later years in their college life.1 Peer students in the

same classes during early college years may end up choosing very di¤erent majors. In

contrast, many (if not most) countries in Asia, Europe and Latin America use college-

major-speci�c admissions rules. A student is admitted to a speci�c college-major pair

and attends classes with peers (mostly) from her own major upon enrollment. We

label the �rst system where students choose majors after enrollment by Sys.S (for

sequential), and the second system where students have to make a joint college-major

choice by Sys.J (for joint).

Which system is more e¢ cient for the same population of students? This is a nat-

ural and policy-relevant question, yet one without a simple answer. To the extent that

college education is aimed at providing a society with specialized personnel, Sys.J may

be more e¢ cient: it allows for more specialized training, and maximizes the interac-

tion among students with similar comparative advantages. However, if students are

uncertain about their major-speci�c �ts, Sys.J may lead to serious mismatch problems.

E¢ ciency comparisons across these two admissions systems depend critically on the

degree of uncertainty faced by students, the relative importance of peer e¤ects, and

student sorting behavior that determines equilibrium peer quality. Simple cross-system

comparisons are unlikely to be informative because of the potential unobserved di¤er-

ences between student populations under di¤erent systems. The fundamental di¢ culty,

that one does not observe the same population of students under two di¤erent systems,

has prevented researchers from conducting e¢ ciency comparison and providing neces-

sary information for policy makers before implementing admissions policy reforms. We

take a �rst step in this direction, via a structural approach.

We develop a model of student sorting under Sys.J, allowing for uncertainties over

student-major �ts and endogenous peer quality that a¤ects individual outcomes. Our

�rst goal is to understand the equilibrium sorting behavior among students in Sys.S.

Our second goal is to examine changes in student welfare and the distribution of ed-

ucational outcomes if, instead of college-major-speci�c, a college-speci�c admissions

regime is adopted. We apply the model to the case of Chile, where we have obtained

detailed micro-level data on college enrollment and on job market returns. Although

our empirical analysis focuses on the case of Chile, our framework can be easily adapted

1With the exception of Quebec province.
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to other countries with similar admissions systems.

In the model, students di¤er in their (multi-dimensional) abilities and educational

preferences, and they face uncertainty about their suitability to various majors. The

cost of and return to college education depend not only on one�s own characteristics,

but may also on the quality of one�s peers. In the baseline case (Sys.J), there are two

decision periods. First, a student makes a college-major enrollment decision, based

on her expectations about peer quality across di¤erent programs and about how well

suited she is to various majors. The choices of individual students, in turn, determine

the equilibrium peer quality. In the second period, a college enrollee learns about her

�t to the chosen major and decides whether or not to continue her studies.

In our �rst set of counterfactual policy experiments (Sys.S), a planner chooses op-

timal college-speci�c, rather than college-major-speci�c, admissions policies; students

make enrollment decisions and postpone their choices of majors until after they learn

about their �ts to various majors. Taking into account the externality of peer e¤ects,

the planner�s optimal admissions policy guides student sorting toward the maximiza-

tion of their overall welfare.

Several factors are critical for the changes in equilibrium outcomes as Sys.J switches

to Sys.S. The �rst factor is the degree of uncertainty students face about their major-

speci�c �ts, which we �nd to be nontrivial. Indeed, postponing the choice of majors

increases the overall college retention rate from 75% in the baseline to 90% in the

counterfactual.

Second, in contrast to Sys.J, where peer students are from the same major upon

college enrollment, Sys.S features a much broader student body in �rst-period classes.

While students di¤er in their comparative advantages, some students have advantages

over others in multiple majors, and some majors have superior student quality. With

the switch from Sys.J to Sys.S, on the one hand, the quality of �rst-period peers in

"elite" majors will decline; on the other hand, "non-elite" majors will bene�t from

having "elite" students in their �rst-period classes. The overall e¢ ciency depends on,

among other factors, which of the two e¤ects dominates. Our estimation results show

that for "elite" majors, own ability is more important than peer ability in determining

one�s market return, while the opposite is true for "non-elite" majors. Combining this

fact with the improvement in student-major match quality, we �nd that the average

productivity of college graduates improves in all majors when Sys.S is adopted.

Finally, as students spend time trying out di¤erent majors, their specialized training
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is delayed. Welfare comparisons vary with how costly this delay is. Average student

welfare will increase by 5%; if delayed specialization under Sys.S does not reduce the

amount of marketable skills one obtains in college compared to Sys.J. At the other

extreme, if the �rst period in college contributes nothing to one�s skills under Sys.S,

and if a student has to make up for this loss by extending her college life accordingly,

a 0:9% loss in mean welfare will result.

As there are both pro�s and con�s to each system, our second counterfactual ex-

periment involves a hybrid policy that combines the merits of Sys.S and Sys.J: college

enrollees are allowed to choose either to specialize upon enrollment or to postpone the

choice of major until after they learn about their �ts to various majors. With this extra

�exibility, the hybrid policy leads to even higher welfare gains than Sys.S does: the

higher the cost of postponing specialization, the greater the advantage of the hybrid

policy.

Given that under the same admissions framework of Sys.J, some countries have

more �exible transfer policies than others, we also conduct an experiment to explore

the gains from such �exibility. We �nd that a more �exible transfer policy always

improves welfare but the improvement is milder than that from a switch to Sys.S as

long as the cost of delaying specialization is not too high.

Our paper is closely related to studies that treat education as a sequential choice

made under uncertainty and emphasize the multi-dimensionality of human capital.2

For example, Altonji (1993) introduces a model in which college students learn their

preferences and probabilities of completion in two �elds of study. Arcidiacono (2004)

estimates a structural model of college and major choice in the U.S., where students

learn about their abilities via test scores in college before settling down to their majors.

As in our paper, he allows for peer e¤ects.3 Focusing on individual decisions, he treats

peer quality as exogenous.4

While this literature has focused on individual decision problems, our goal is to

2Examples of theoretical papers include Manski (1989) and Comay, Melnick and Pollachek (1973).
3There is a large and controversial literature on peer e¤ects. Methodological issues are discussed in

Manski (1993), Mo¢ tt (2001), Brock and Durlauf (2001), and Blume, Brock, Durlauf and Ioannides
(2011). Limiting discussion to recent research on peer e¤ects in higher education, Sacerdote (2001)
and Zimmerman (2003) �nd peer e¤ects between roommates on grade point averages. Betts and
Morell (1999) �nd that high-school peer groups a¤ect college grade point average. Arcidiacono and
Nicholson (2005) �nd no peer e¤ects among medical students. Dale and Krueger (1998) have mixed
�ndings.

4Stinebrickner and Stinebrickner (2011) use expectation data to study student�s choice of major.
Altonji, Blom and Meghir (2012) provides a comprehensive survey of the literature on the demand
for and return to education by �eld of study in the U.S.
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study the educational outcomes for the population of students, and to provide predic-

tions about these outcomes under counterfactual policy regimes. One cannot achieve

this goal without modeling student sorting in an equilibrium framework, because peer

quality may change as students re-sort themselves under di¤erent policy regimes.

In its emphasis on equilibrium structure, our paper is related to Epple, Romano

and Sieg (2006) and Fu (2013). Both papers study college enrollment in a decentral-

ized market, where colleges compete for better students.5 Given our goal of addressing

e¢ ciency-related issues, and the fact that colleges in Sys.J countries are often coordi-

nated, we study a di¤erent type of equilibrium, where the players include students and

a single planner. In this centralized environment, we abstract from the determination

of tuition, which is likely to be more important in decentralized market equilibria stud-

ied by Epple, Romano and Sieg (2006) and Fu (2013).6 Instead, we emphasize some

other aspects of college education that are absent in these two previous studies but are

more essential to our purpose: the multi-dimensionality of abilities and uncertainties

over student-major �ts. Moreover, we relate college education to job market outcomes,

which is absent in both previous studies.

Studies on the comparison across di¤erent admissions systems are relatively sparse.

Ofer Malamud has a series of papers that compare the labor market consequences

between the English (Sys.J) and Scottish (Sys.S) systems.7 Malamud (2010) �nds

that the average earnings are not signi�cantly di¤erent between the two countries,

while Malamud (2011) �nds that individuals from Scotland are less likely to switch to

an unrelated occupation compared to their English counterparts, suggesting that the

bene�ts to increased match quality are su¢ ciently large to outweigh the greater loss

in skills from specializing early. With the caveat that students in two countries may

di¤er in unobservable ways, his �ndings contribute to our understanding of the relative

merits of the two systems. Our paper aims at pushing the frontier toward comparing

the relative e¢ ciency of alternative systems for the same population of students.

The rest of the paper is organized as follows: Section 2 provides some background

information about education in Chile, which guides our modeling choices. Section 3

5Epple, Romano and Sieg (2006) model equilibrium admissions, �nancial aid and enrollment. Fu
(2013) models equilibrium tuition, applications, admissions and enrollment.

6College-provided �nancial aid and scholarships are rare in Chile.
7�English students usually follow a narrow curriculum that focuses on the main �eld and allows for

little exposure to other �elds. Indeed, most universities in England require students who switch �elds
of study to start university anew (though several do allow for some limited switching across related
�elds).�(Malamud (2010)).
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lays out the model. Section 4 describes the data. Section 5 describes the estimation

followed by the empirical results. Section 7 conducts counterfactual policy experiments.

The last section concludes the paper. The appendices in the paper and online contains

additional details and tables.

2 Background: Education in Chile

There are three types of high schools in Chile: scienti�c-humanist (regular), technical-

professional (vocational) and artistic. Most students who want to pursue a college

degree attend the �rst type. In their 11th grade, students choose to follow a certain

academic track based on their general interests, where a track can be humanities,

sciences or arts. From then on, students receive more advanced training in subjects

corresponding to their tracks.

The higher education system in Chile consists of three types of institutions: uni-

versities, professional institutes, and technical formation centers. Universities o¤er

licentiate degree programs and award academic degrees. In 2011, total enrollment in

universities accounts for over 60% of all Chilean students enrolled in the higher ed-

ucation system.8 There are two main categories of universities: the 25 traditional

universities and the over 30 non-traditional private universities. Traditional universi-

ties comprise the oldest and most prestigious two universities, and institutions derived

from them. They are coordinated by the Council of Chancellors of Chilean Universities

(CRUCH), and receive partial funding from the state. In 2011, traditional universities

accommodated about 50% of all college students pursuing a bachelor�s degree.

The traditional universities employ a single admission process: the University Se-

lection Test (PSU), which is very similar to the SAT test in the U.S. The test consists of

two mandatory exams, math and language, and two additional speci�c exams, sciences

and social sciences. Taking the PSU involves a �xed fee but the marginal cost of each

exam is zero.9 Students following di¤erent academic tracks in high school will take

either one or both speci�c exam(s). Together with the high school GPA, various PSU

test scores are the only components of an index used in the admissions process. This

index is a weighted average of GPA and PSU scores, where the weights di¤er across

college programs. A student is admitted to a speci�c college-major pair if her index

8Enrollments in professional institutes and technical formation centers account for 25:7% and 13:7%
respectively.

9In 2011, the fee was 23; 500 pesos (1 USD is about 484 Chilean pesos).
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is above the cuto¤ index required by that program. That is, college admissions are

college-major speci�c. A student must choose a college-major pair jointly.

In our analysis, colleges refer only to the traditional universities for several reasons.

First, we wish to examine the consequences of a centralized reform to the admissions

process. This experiment is more applicable to the traditional universities, which

are coordinated and state-funded, and follow a single admissions process. Second,

non-traditional private universities are usually considered inferior to the traditional

universities; and most of them follow (almost) open-admissions policies. We consider

it more appropriate to treat them as part of the outside option for students in our

model. Finally, we have enrollment data only for traditional universities.

Transfers across programs are rare in Chile. Besides a minimum college GPA re-

quirement that di¤ers across programs, typical transfer policies require that a student

have studied at least two semesters in her former program and that the contents of her

former studies be comparable to those of the program she intends to transfer to. In re-

ality, the practice is even more restrictive. According a report by the OECD, "students

must choose an academic �eld at the inception of their studies. With a few exceptions,

lateral mobility between academic programmes is not permitted, even within institu-

tions. This factor, combined with limited career orientation in high school, greatly

in�uences dropout rates in tertiary education."10 The same report also notes that the

highly in�exible curriculum design further limits the mobility between programs.11 If a

student dropped out in order to re-apply to other programs in traditional universities,

she must re-take the PSU test.12

It is worth noting that the institutional details in Chile are similar to those in many

other countries, such as many Asian countries (e.g., China and Japan) and European

countries (e.g., Spain and Turkey), in terms of the specialized tracking in high school, a

single admissions process and rigid transfer policies. The online Appendix B4 provides

further descriptions of the systems in these other countries.

10Reviews of National Policies for Education: Tertiary Education in Chile (2009) OECD, page 146.
11"A review of the curricular grid shows a rigid curriculum with very limited or no options (electives

classes) once the student has chosen an area of specialisation. In some cases, �exibility is incorporated
by making available a few optional courses within the same �eld of study." page 143.
12This was true for cohorts in our sample. A new policy was announced recently that allows students

to use one-year-old PSU test results for college application.
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3 Model

This section presents our model of Sys.J, guided by the institutional details described

above. A student makes her college-major choice, subject to college-major-speci�c

admissions rules. After �rst period in college, she learns about her �t to her major

and decides whether or not to continue her studies. To smooth reading, we leave some

details of the model to the end of this section and some functional form assumptions

in the appendix.

3.1 Primitives

There is a continuum of students faced with J colleges, each withM majors. Let (j;m)

denote a program. Admissions are subject to program-speci�c standards. An outside

option is available to all students.

3.1.1 Student Characteristics

Students di¤er in gender (g), family income group (y), abilities (a) and academic

interests. In particular, a = famgMm=1 is a vector of major-speci�c (pre-college) abilities.
Denote student characteristics that are observable to the researcher by the vector x �
[a; y; g] ; and its distribution by Fx (�).

3.1.2 Skills and Wages

Skill attainments in college depends on a student�s major-speci�c ability (am), peer

quality (Ajm), and how e¢ cient/suitable she is for the major.13 In particular, Ajm is the

average major-m ability of enrollees in (j;m) :14 A student faces uncertainty in making

enrollment decisions because major-speci�c e¢ ciency is revealed to her only after she

takes courses in that major. Denote one�s major-speci�c e¢ ciency as f�mgm ~i:i:d:F�(�).
13Peer quality may a¤ect market returns via di¤erent channels, such as human capital production,

statistical discrimination, social networks, etc. Our data do not allow us to distinguish among var-
ious channels. For ease of illustration, we describe peer quality in the framework of human capital
production.
14Arguably, the entire distribution of peer ability may matter. For feasibility reasons, we follow the

common practice in the literature and assume that only the average peer quality matters.
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The human capital production function is15

hm (am; �m; Ajm) = a
1mm A

2m
jm �m:

Wages are major-speci�c stochastic functions of one�s human capital (hence of am; �m; Ajm),

work experience (�) and one�s observable characteristics besides ability, where the ran-

domness comes from a transitory wage shock �� : Denote the wage rate for a graduate

from program (j;m) by wm (� ; x; �m; Ajm; �� ) :
16

3.1.3 Consumption Values and Costs

The per-period net consumption value of attending (j;m) is

vjm(x; �; Ajm) = vm(x; �1m) + �2jm � Cjm(x;Ajm); (1)

where vm(x; �1m) is the consumption value of major m and Cjm(x;Ajm) is the cost of

attending program (j;m). �1m is one�s taste for major m and �2jm that for program

(j;m). Let �1 = f�1mgm, �2 = f�2jmgjm and F� (�) be the joint distribution of � = [�1; �2] :
An individual student�s tastes are correlated across majors within a college, and across

colleges given the same major. Notice that the consumption value of a major vm(x; �1m)

enters both (1) and, as shown later, one�s utility on the job.

3.1.4 Timing

There are three stages in this model.

Stage 1: Students make college-major enrollment decisions:

Stage 2: A college enrollee in major m observes her major-speci�c e¢ ciency �m, and

chooses to stay or to drop out at the end the �rst period in college. Student choice is

restricted to be between staying and dropping out, which is consistent with the Chilean

practice mentioned in the background information section. Later in a counterfactual

experiment, we explore the gain from more �exible transfer policies.17

15Notice that hm (�) represents the total amount of marketable skills. As such, hm (�) may be a
combination of pure major-speci�c skill and general skill.
16Recall that a 2 x:
17We also assume that an enrollee fully observes her e¢ ciency in her major by the end of the �rst

period (2 years) in college. It will be interesting to allow for gradual learning. Given the lack of
information on student performance in college, we leave such extensions to future work.
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Stage 3: Stayers study one more period in college and then enter the labor market.

The following table summarizes the information at each decision period.

Information Set: Sys.J

Stage Student Researcher

1: Enrollment x; � x

2: Stay/Drop out x; �; �m x

3.2 Student Problem

This subsection solves the student�s problem backwards.18

3.2.1 Continuation Decision

After the �rst college period, an enrollee in (j;m) observes her major-m e¢ ciency �m,

and decides whether to continue studying or to drop out. Let Vd (x) be the value

of dropping out, a function of student characteristics.19 Given peer quality Ajm; a

student�s second-period problem is

ujm(x; �; �mjAjm) =

max

(
vjm(x; �; Ajm) +

TX
� 0=3

��
0�2 [E� (wm(� � 3; x; �m; Ajm; �)) + vm(x; �)] ; Vd (x)

)
:

If the student chooses to continue, she will stay one more period in college, obtaining the

net consumption value vjm(x; �; Ajm); and then enjoy the monetary and consumption

value of her major after college from period 3 to retirement period T; discounted at

rate �. Let �2jm(x; �; �mjAjm) = 1 if an enrollee in program (j;m) chooses to continue

in Stage 2.

18To ease the notation, we present the model as if each period in college lasts one year. In practice,
we treat the �rst two years in college as the �rst college period in the model, and the rest of college
years as the second period, which di¤ers across majors. Students�value functions are adjusted to be
consistent with the actual time framework. See the Appendix A2.1 for details.
19Ideally, one would model the dropout and the outside options in further detail, by di¤erentiating

various choices within the outside option: working, re-taking the PSU test and re-applying the next
year, or attending an open admissions private college. Unfortunately, we observe none of these details.
In order to make the most use of the data available, we model the values of the dropout and the
outside options as functions of student characteristics. These value functions, hence student welfare,
are identi�ed up to a constant because 1) we have normalized the non-pecuniary value of majors to
zero for males and 2) a student�s utility is measured in pesos and we observe wages. See Appendix
A1 for functional forms.
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3.2.2 College-Major Choice

Under the Chilean system, program (j;m) is in a student�s choice set if only if am � a�jm;

the (j;m)-speci�c admissions cuto¤. Given the vector of peer quality in every program

A � fAjmgjm, a student chooses the best among the programs she is admitted to and
the outside option with value V0 (x), i.e.,

U(x; �ja�; A) = max
(

max
(j;m)jam�a�jm

f�E�m(ujm(x; �; �mjAjm)) + vjm(x; �; Ajm)g; V0 (x)
)
:

Let �1jm(x; �ja�; A) = 1 if program (j;m) is chosen in Stage 1.20

3.3 Sorting Equilibrium

De�nition 1 Given cuto¤s a�; a sorting equilibrium consists of a set of student en-

rollment and continuation strategies
�
�1jm(x; �ja�; �); �2jm(x; �; �mj�)

	
jm
; and the vector

of peer quality A = fAjmgjm ; such that21

(a) �2jm(x; �; �mjAjm) is an optimal continuation decision for every (x; �; �m);
(b)
�
�1jm (x; �ja�; A)

	
jm
is an optimal enrollment decision for every (x; �) ;

(c) A is consistent with individual decisions such that, for every (j;m) ;

Ajm =

R
x

R
�
�1jm(x; �ja�; A)amdF� (�) dFx(x)R

x

R
�
�1jm(x; �ja�; A)dF� (�) dFx(x)

: (2)

Finding a sorting equilibrium can be viewed as a classical �xed-point problem of an

equilibrium mapping from the support of peer quality A to itself. Online Appendix B5

proves the existence of an equilibrium in a simpli�ed model. Appendix A3 describes

our algorithm to search for equilibria, which we always �nd in practice.22

20For a student, the enrollment choice is generically unique.
21A sorting equilibrium takes the admissions cuto¤s as given. We choose not to model the cuto¤

rules under the status quo (Sys.J) because our goal is to consider a di¤erent admissions regime (Sys.S)
and compare it with the status quo. For this purpose, we need to understand student sorting and
uncover the underlying student-side parameters, which can be accomplished by estimating the sorting
equilibrium model. We also need to model how the admissions policies are chosen under Sys.S, which
we do in the counterfactual experiments.
22Uniqueness of the equilibrium is not guaranteed. Our algorithm deals with this issue using the

fact that all equilibrium objects are observed in the data.
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3.4 Further Details of the Model

3.4.1 Student Characteristics

There are two family income groups y 2 flow; highg :23 The major-speci�c (pre-college)
ability is given by

am =
SX
l=1

!mlsl;

where s = [s1; s2; :::; sS] is the vector of test scores that summarize one�s knowledge

in subjects such as math, language, social science and science; !m = [!m1; :::; !mS] is

the vector of major-m-speci�c weights and
PS

l=1 !ml = 1. !m�s di¤er across majors:

for example, an engineer uses math knowledge more and language knowledge less than

a journalist. Notice that abilities are correlated across majors as multi-dimensional

knowledge is used in various majors. Given the di¤erent academic tracks they follow

in high school, some students will consider only majors that emphasize knowledge in

certain subjects, while some are open to all majors. Such general interests are re�ected

in their abilities.24 LetMa be the set of majors within the general interest of a student

with ability vector a.25

3.4.2 Major-Speci�c Consumption Values and Education Costs

The per-period consumption value of major m depends on one�s major-speci�c taste

and one�s characteristics: An individual with higher ability am may �nd it more en-

joyable (less costly) to study in major m and work in major-m related jobs. We also

allow preferences to di¤er across genders: on average, some majors may appeal more

23y = low if family income is lower than the median among Chilean households.
24Without increasing the test fee, taking both the science and the social science exams will only

enlarge a student�s opportunity set. A student who does not take the science exam will not be
considered by programs that require science scores, but her admissions to programs that do not
require science scores will not be a¤ected even if she scores poorly in science. However, some students
only take either the science or the social science exam, we view this as indication of their general
academic interests. We treat students�preferences and abilities as pre-determined.
25Letting am = n=a if a student does not take the subject test required by major m; Ma is given by

Ma = fm 2 f1; :::;Mg : am 6= n=ag:

We adopt the convention that one�s taste �m = �1 if am =2Ma:
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to females than to males.26 In particular, vm(x; �1m) is given by

vm(x; �1m) = �mI(female) + �1mam + �2ma
2
m + �1m;

where the mean major-speci�c consumption values for males are normalized to zero,

and �m is the mean major-m value for females. �m�s measure how consumption values

in major m change with major-speci�c abilities.27

The monetary and e¤ort costs of attending program (j;m), governed by the cost

function Cjm (x;Ajm) ; depend on student characteristics x and peer quality Ajm: In

particular, we allow the same tuition level to have di¤erent cost impacts on students

from di¤erent family income groups, so as to capture possible credit constraints.28 The

cost also depends on one�s own ability a 2 x; as well as peer quality Ajm. For example,
it may be more challenging to attend a class with high-ability peers because of direct

peer pressure and/or curriculum designs that cater to average student ability.

4 Data

4.1 Data Sources and Sample Selection

Our �rst data source is the Chilean Department of Evaluation and Educational Testing

Service, which records the PSU scores and high school GPA of all test takers and

the college-major enrollment information for those enrolled in traditional universities.

Besides multiple years of macro data, we also obtained micro-level data for the 2011

freshmen cohort. There were 247; 360 PSU test takers in 2011. We focus on the 159; 365

students, who met the minimum requirement for admission to at least one program

and who were not admitted based on special talents such as athletes.29 From the

159; 365 students, we draw 10; 000 students as our �nal sample due to computational

26Gender-speci�c preferences may arise from not only individual tastes, but also social norms and
other channels. We label the combination of all these potential factors as "gender-speci�c tastes."
27In the estimation, we restrict �2m to be the same across majors.
28If we had information on how students �nanced their college education, we would have modeled

credit constraints more explicitly.
29Ineligible students can only choose the outside option and will not contribute to the estimation.
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considerations.30 ;31

Our second data source is Futuro Laboral, a project by the Ministry of Education

that follows a random sample of college graduates (classes of 1995, 1998, 2000 and

2001). This panel data set matches tax return information with students�college ad-

missions information, so we observe the worker�s annual earnings, months worked, high

school GPA, PSU scores, college and major. For each cohort, earnings information is

available from graduation until 2005. We calculated the monthly wage as annual earn-

ings divided by the number of months worked, and the annual wage as 12 times the

monthly wage, measured in thousands of de�ated pesos. For each major, we trimmed

wages at the 2nd and the 98th percentiles. The two most recent cohorts have the

largest numbers of observations and they have very similar observable characteristics.

We combined these two cohorts to obtain our measures of abilities and wages among

graduates from di¤erent college-major programs. We also use the wage information

from the two earlier cohorts to measure major-speci�c wage growth at higher work ex-

perience levels. The �nal wage sample consists of 19; 201 individuals from the combined

2000-2001 cohorts, and 10; 618 from the 1995 and 1998 cohorts.

The PSU data contains information on individual ability, enrollment and peer qual-

ity, but not the market return to college education. The wage data, on the other hand,

does not have information on the quality of one�s peers while in college. We combine

these two data sets in our empirical analysis. We standardized the test scores according

to the cohort-speci�c mean and standard deviation to make the test scores comparable

across cohorts. Thus, we have created a synthetic cohort, the empirical counterpart of

students in our model.32

The wage data from Futuro Laboral contains wage information only in one�s early

career. To obtain information on wages at higher experience levels, we use cross-

sectional data from the Chilean Characterization Socioeconomic Survey (CASEN),

30For each parameter con�guration, we have to solve for the equilibrium via an iterative procedure
as discussed in the appendix. Each iteration involves numerically solving the student�s problem and
integrating out unobserved tastes. This has to be repeated for every student in the sample, since each
of them has a di¤erent x:
31Some options are chosen by students at much lower frequency than others. To improve e¢ ciency,

we conduct choice-based sampling with weights calculated from the distribution of choices in the
population of 159; 365 students. The weighted sample is representative. See Manski and McFadden
(1981).
32Given data availability, we have to make the assumption that there exists no systematic di¤erence

across cohorts conditional on comparable test scores. This assumption rules out, for example, the
possibility that di¤erent cohorts may face di¤erent degrees of uncertainties over student-major match
quality �.
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which is similar to the Current Population Survey in the U.S. We compare the average

wages across di¤erent cohorts of college graduates to obtain measures of wage growth

at di¤erent experience levels. Although they are not from panel data, such measures

restrict the model from predicting unrealistic wage paths in one�s later career in order

to �t other aspects of the data.

Our last data source is the Indices database from the Ministry of Education of

Chile. It contains information on college-major-speci�c tuition, weights used to form

the admission score index (f!mg), the admission cuto¤s
��
a�jm
	�
; and the numbers of

enrollees in consecutive years.

4.2 Aggregation of Academic Programs

For both sample size (of the wage data) and computational reasons, we have aggre-

gated speci�c majors into eight categories according to the area of study, coursework,

PSU requirements and average wage levels.33 The eight aggregated majors are: Busi-

ness, Education, Arts and Social Sciences, Sciences, Engineering, Health, Medicine and

Law.34 We also aggregated individual traditional universities into three tiers based on

admissions criteria and student quality.35 Thus, students have 25 options, including

the outside option, in making their enrollment decisions.36

Table 1 shows some details about the aggregation. The third column shows the

quality of students within each tier, measured by the average of math and language

scores. Treating each college-level mean score as a variable, the parentheses show the

cross-college standard deviations of these means within each tier. The last two columns

show similar statistics for total enrollment and tuition. Cross-tier di¤erences are clear:

higher-ranked colleges have better students, larger enrollment and higher tuition.

33Although we can enlarge the sample size of the PSU data by including more students, we are
restricted by the sample size of the wage data. Finer division will lead to too few observations in each
program.
34All these majors, including law and medicine, are o¤ered as undergraduate majors in Chile.

Medicine and health are very di¤erent majors: medicine produces doctors and medical researchers
while health produces mainly nurses.
35The empirical de�nitions of objects such as program-speci�c retention rates are adjusted to be

consistent with the aggregation, see Appendix A2.2 for details.
36As a by-product of the aggregation of programs, the assumption that students cannot transfer

becomes even more reasonable because any transfer across the aggregated programs will involve very
di¤erent programs.
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Table 1 Aggregation of Colleges

Tier No. Colleges Mean Scorea Total Enrollment Tuitionb

1 2 702 (4.2) 21440 (2171) 3609 (568.7)

2 10 616 (17.7) 10239 (4416) 2560 (337.2)

3 13 568 (7.2) 5276 (2043) 2219 (304.2)
aThe average of math+language

2
across freshmen within a college.

bThe average tuition (in 1,000 pesos) across majors within a college.
cCross-college std. deviations are shown in parentheses.

4.3 Summary Statistics

This subsection provides summary statistics for the aggregated programs based on our

�nal sample. Table 2 shows summary statistics by enrollment status. Both test scores

and graduate wages increase with the ranking of tiers. Over 71% of students in the

sample were not enrolled in any of the traditional universities and only 5% were enrolled

in the top tier.37 Compared to average students, females (53% of the sample) are less

likely to enroll in college (25% v.s. 28%) and a larger fraction of female enrollees are

enrolled in the lowest tier (35% v.s. 32%).

Table 2 Summary Statistics By Tier (All Students)

Matha Language Log Wageb Dist. for All (%) Dist. for Female (%)

Tier 1 709 (80.9) 692 (58.5) 8.91 (0.59) 5.1 4.5

Tier 2 624 (69.0) 611 (68.9) 8.57 (0.66) 14.1 12.2

Tier 3 572 (58.8) 570 (62.4) 8.32 (0.69) 9.0 9.1

Outside 533 (67.5) 532 (67.4) - 71.8 74.2
aThe maximum score for each subject is 850. Std. deviations across students are in parentheses.
bLog of starting wage in 1000 pesos.

Table 3 shows enrollee characteristics by major. The majors are listed in the order

of the observed average starting wages.38 This rank is also roughly consistent with

the rank of average test scores across majors. Medical students score higher in both

math and language than all other students, while education students are at the other

extreme. Comparative advantages di¤er across majors. For example, law and social

37For students not enrolled in the traditional universities, we have no information other than their
test scores.
38See Figure 1 in the online appendix for wage paths by major.
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science majors have clear comparative advantage in language, while the opposite is

true for engineering and science majors. The last two columns show the fraction of

students in each major among, respectively, all enrollees and female enrollees. Females

are signi�cantly more likely to major in education and health but much less so in

engineering.

Table 3 Summary Statistics By Major (Enrollees)

Math Language Dist. for All (%) Dist. for Female (%)

Medicine 750 (66.0) 719 (55.5) 3.4 3.2

Law 607 (74.2) 671 (72.1) 4.6 4.8

Engineering 644 (79.7) 597 (75.4) 36.6 23.4

Business 620 (87.3) 605 (73.9) 9.9 10.5

Health 628 (58.3) 632 (64.3) 11.7 17.1

Science 631 (78.2) 606 (82.1) 8.5 8.3

Arts&Social 578 (70.7) 624 (72.4) 11.2 14.1

Education 569 (59.5) 593 (64.2) 14.0 18.6

5 Estimation

The model is estimated via simulated generalized method of moments (SGMM). For a

given parameter con�guration, we solve for the sorting equilibrium and compute the

model-predicted moments. The parameter estimates minimize the weighted distance

between model-predicted moments (M (�)) and data moments
�
Md
�
:

b� = argmin
�

n�
M (�)�Md

�0
W
�
M (�)�Md

�o
;

where � is the vector of structural parameters, and W is a positive-de�nite weighting

matrix.39 � includes parameters governing the distributions of student tastes, the

distribution of major-speci�c e¢ ciency shocks, the human capital production function,

the wage function, the consumption values and costs of colleges and majors, and the

39In particular, W is a diagonal matrix, the (k; k)th component of which is the inverse of the
variance of the kth moment, estimated from the data. To calculate the optimal weighting matrix, we
would have to numerically calculate the derivatives of the GMM objective function, which may lead
to inconsistency due to numerical imprecision. So we choose not to use the optimal weighting matrix.
Under the current weighting matrix, our estimates will be consistent but less e¢ cient. However, as
shown in the estimation results, the precision of most of our parameter estimates is high due to the
relatively large sample size.
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values of the outside and the dropout options.

Given that the equilibrium peer quality is observed and used as target moments,

we have also estimated the parameters without imposing equilibrium conditions, which

boils down to an individual decision model. We deem model consistency critical for the

empirical analysis we do, so we focus on the �rst approach because it favors parameters

that guarantee equilibrium consistency over those that may sacri�ce consistency for

better values of the SGMM objective function.40

5.1 Target Moments

The combined data sets contain information on various predictions of the model, based

on which we choose our target moments. Although the entire set of model parame-

ters work jointly to �t the data, one can obtain some intuition about identi�cation

from considering various aspects of the data that are more informative about certain

parameters than others.

The PSU data contains information that summarizes the sorting equilibrium: program-

speci�c enrollment and peer quality (Moments 1 (a) and 2 (a) as listed below). It also

provides information critical for the identi�cation of student preferences and costs.

The di¤erent enrollment choices made by students with di¤erent demographics (Mo-

ments 1 (a)) reveal information on the e¤ects of these characteristics on preferences

and costs. Students also di¤er in their unobservables. Among similar students who

pursued the same major, some chose higher-ranked colleges and others lower-ranked

colleges (Moments 1 (b)). This informs us of the dispersion in tastes for colleges. Simi-

lar students within the same college made di¤erent major choices (e.g., more lucrative

majors v.s. less lucrative ones), re�ecting the dispersion of their tastes for majors (Mo-

ments 1 (c)). Together with student enrollment choices (Moments 1), the distribution

of abilities within a program (Moments 2 (a) and 2 (b)) is informative about the rela-

tionship between peer quality and e¤ort costs. For example, if the relationship is too

weak (strong), then more (fewer) students who are eligible will be drawn to programs

with better peers in order to bene�t from the positive peer e¤ects on wages, which will

increase (reduce) the dispersion of abilities in these programs.

In the wage data, the relationship between wages and student�s observable charac-

40Di¤erences between the estimates from these two estimation approaches exist but are not big
enough to generate signi�cant di¤erences in model �ts or in counterfactual experiments. The results
from the alternative estimation approach are available upon request.

17



teristics (Moments 4 (b) and 4 (c)) provides key information about major-speci�c hu-

man capital production and wage functions. College retention rates (Moments 2 (c)),

the ability di¤erence between enrollees and those who stayed (Moments 2 (a) and 3),

together with the dispersion of wages among workers with similar observables (Mo-

ments 4), inform us of the dispersion of major-speci�c e¢ ciency shocks. For example,

lower dispersion in those shocks would lead to higher retention rates and lower wage

dispersion; moreover, since pre-college ability is relatively more important in this case,

conditional on retention rate, the ability di¤erence between enrollees and graduates

should be larger. Finally, Moments 5 inform us of wage growth over the life cycle. In

total, we estimate 88 free parameters by matching 448 moments.41

1. Enrollment status:

(a) Fractions of students across tier-major (j;m) overall, among females and

among low-family-income students.

(b) Fractions of students enrolled in (j;m) with am � a�j0m where j0 is a tier

ranked higher than j and am � a�jm guarantees that the student can choose

(j0;m) :

(c) Fractions of students enrolled in j with am � a�jm by (j;m) :

2. Ability by enrollment status:

(a) First and second moments of major-m ability (am) by (j;m) :

(b) Mean test scores among students who chose the outside option.

(c) Retention rates by (j;m) calculated from enrollments in the college data.

3. Graduate ability: First and second moments of major-m ability among graduates

by (j;m) :

4. Starting wage:

(a) First and second moments of log starting wage by (j;m).

41We have also conducted Monte Carlo exercises to provide some evidence of identi�cation. In
particular, we �rst simulated data with parameter values that we choose, treated as the "truth" and
then, using moments from the simulated data, started the estimation of the model from a wide range
of initial guesses of parameter values. In all cases, we were able to recover parameter values that are
close to the "truth."
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(b) First moments of log starting wage by (j;m) for females.

(c) Cross moments of log starting wage and major-speci�c ability by (j;m) :

5. Wage growth:

(a) Mean of the �rst di¤erences of log wage by major for experience � = 1; :::; 9:

(b) From CASEN: �rst di¤erence of the mean log wage at � = 10; :::; 40.

6 Results

6.1 Parameter Estimates

This section reports the estimates of parameters of major interest. Tables A2.1-A2.4 in

the appendix report the estimates of other parameters. Standard errors (in parentheses)

are calculated via bootstrapping.42

Table 4 Human Capital Production

Peer Ability (
1m) Own Ability (
2m)

Medicine 0.01 (0.002) 0.18 (0.04)

Law 0.58 (0.04) 1.26 (0.02)

Engineering 0.70 (0.01) 1.53 (0.01)

Business 1.48 (0.01) 1.52 (0.01)

Health 0.53 (0.03) 0.48 (0.03)

Science 1.44 (0.01) 1.62 (0.01)

Arts&Social 0.91 (0.02) 1.03 (0.03)

Education 1.08 (0.01) 0.55 (0.02)

E¢ ciency Shock (��) 0.60 (0.08)

The �rst eight rows of Table 4 show the estimates of the parameters in the human

capital production function, which also measure the elasticities of wages with respect

to peer ability and own ability. The left panel shows signi�cant di¤erences in the

importance of peer ability across majors: the elasticity of wage with respect to peer

42Calculating standard errors via standard �rst-order Taylor expansions might be problematic be-
cause we have to use numerical method to calculate the derivatives of our GMM objective function.
We took 200 bootstrap iterations. Given the sample size (10,000) and the sampling scheme described
in footnote 30, the precison of most of our estimates is high.
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quality is over 1:4 in business and science, while only 0:01 in medicine.43 Considering

both the left and the right panels of Table 4, we �nd that the relative importance of peer

ability versus own ability di¤ers systematically across majors although no restriction

has been imposed in this respect. In majors with the highest average wages, the

elasticity of wage with respect to peer ability is at most half of that with respect to

own ability, while the opposite is true for education, the major with the lowest average

wage.44 This �nding has major implications for welfare analysis as Sys.J switches to

Sys.S, because the quality of �rst-period peers will decline for "elite" majors, while

increase for "non-elite" majors. Table 4 suggests that the former negative e¤ect is

likely to be small, while the latter positive e¤ect may be signi�cant.

The last row of Table 4 shows the dispersion of major-speci�c e¢ ciency shocks. To

understand the magnitude of this estimate (0:6) ; imagine two counterfactual scenarios:

�rst, if a student�s �t to her major were improved by one standard deviation, her

starting wage would increase by about 40% ceteris paribus. Second, if the dispersion

of these shocks were reduced by 25% from 0:6 to 0:45; the overall college retention

rate would increase from 75% in the baseline to about 85%: Clearly, students face

non-trivial uncertainties over their major-speci�c �ts.

Table 5 reports parameter estimates for major-speci�c consumption values. The

�rst two columns show how these values vary with own ability and peer ability. The

three majors with highest average wages and social science major are the most satisfying

for high ability individuals. Except for engineering, e¤ort costs in these majors are

also the most responsive to peer abilities. This is especially true for law programs,

which constantly put students in competitive situations such as those in case studies.

Empirically, the high cost helps to explain why some law-eligible students chose other

majors despite of the expected high wage for law students. Similarly, the consumption

value in education is found to be low because the low wages in education are not

43As mentioned earlier, our model is silent about why peer ability a¤ects one�s market return. These
reasons are likely to di¤er across majors. For example, the high elasticity of wage with respect to peer
quality in business may arise because the social network one forms in college is highly valued in the
business profession. It may be surprising to see small e¤ects of both own ability and peer ability in
medicine. One possible reason is that compared to their counterpart from lower-tier medical schools
who have lower pre-college ability, a higher fraction of graduates from top medical schools work in
research/education-related jobs and/or in the public sector, where wages are lower than those in the
private sector.
44One possible reason for this �nding is statistical discrimination on the labor market. For example,

in law and medicine, the practice of licensing and residency/intership reduces the need for statistical
discrimination, while the opposite may be true for the education major since the productivity of a
potential teacher is di¢ cult to judge from one�s own characteristics.
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su¢ cient to explain why most students who were eligible for the education major (the

least selective major) chose other majors. The last column of Table 5 shows that on

average, females have higher tastes for the conventionally "feminine" majors: health

and education, but lower tastes for all the other majors. In the online Appendix B1,

we show that when females are endowed with the same preferences as males, there

will no longer exist majors that are obviously dominated by one gender. However,

the di¤erence in comparative advantages across genders also plays a nontrivial role in

explaining their di¤erent enrollment patterns.45

Table 5 Consumption Value (Major-Speci�c Parameters)

Own Ability Peer Ability Female

Medicine 6.33 (0.73) -6.11 (0.62) -1982.2 (255.8)

Law 2.13 (0.41) -17.46 (1.30) -196.9 (66.8)

Engineering 2.22 (0.10) -0.01 (0.002) -1719.5 (59.7)

Business 0.004 (0.006) -2.52 (0.20) -196.6 (33.5)

Health 0.006 (0.004) -0.24 (0.02) 1668.6 (26.6)

Science 0.001 (0.003) -0.001 (0.001) -376.6 (30.6)

Arts&Social 1.50 (0.48) -4.14 (0.65) -393.3 (19.4)

Education 0.003 (0.008) -0.001 (0.02) 1302.5 (17.9)

6.2 Model Fit

Overall, the model �ts the data well. Table 6 shows the �ts of enrollment by tier, for all

students and for females.46 The model slightly underpredicts the fraction of students

enrolled in the top tier.

Table 6 Enrollment by Tier (%)

All Females

Data Model Data Model

Tier 1 5:1 4:5 4.5 3.4

Tier 2 14:1 14:7 12.2 12.1

Tier 3 9:0 9:9 9.1 8.8

45The importance of gender-speci�c preferences has been noted in the literature. For example, Zafar
(2009) �nds that preferences play a strong role in the gender gap of major choices in the U.S.
46The �ts of enrollment patterns for students with low family income are in the online appendix.
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Table 7 shows the distribution of enrollees across majors. The �t for the distribution

among all enrollees is very close. For female enrollees, the model underpredicts the

fraction in social sciences and overpredicts that in education.

Table 7 Enrollee Distribution Across Majors (%)

All Females

Data Model Data Model

Medicine 3.4 5.0 3.2 2.9

Law 4.6 3.9 4.8 3.6

Engineering 36.6 36.5 23.4 24.2

Business 9.9 9.9 10.5 10.6

Health 11.7 10.7 17.1 17.9

Science 8.5 9.0 8.3 8.0

Arts&Social 11.2 11.0 14.1 10.8

Education 14.0 14.1 18.6 21.8

Table 8 Ability & Retention (by Tier)

Abilitya Retention (%)

Tier Data Model Data Model

1 701 701 79.3 79.6

2 624 626 76.5 75.5

3 581 583 68.1 73.2
aThe average of major-speci�c ability across majors in each tier.

Table 9 Ability & Retention (by Major)

Abilitya Retention (%)

Data Model Data Model

Medicine 738 727 87.6 87.0

Law 658 649 81.3 80.8

Engineering 623 625 71.8 74.4

Business 619 619 74.6 73.4

Health 641 636 79.8 78.0

Science 622 614 63.7 72.0

Arts&Social 612 597 74.3 75.1

Education 590 592 77.1 73.8
aAverage major-speci�c ability am in each major m:
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Table 8 (Table 9) shows the �ts of average student ability and retention rates by

tier (major).47 All ability measures are closely matched. The retention rate is over-

predicted for Tier 3 in Table 8 and for science in Table 9.

7 Counterfactual Policy Experiments

We �rst introduce two counterfactual admissions regimes, Sys.S and a hybrid of Sys.S

and Sys.J, providing overall cross-system comparisons. Then, we conduct a milder

policy change that allows students one chance to switch programs within Sys.J. Finally,

we examine the e¤ects of admissions systems in detail, focusing on the contrast between

Sys.J (the baseline) and Sys.S.

7.1 Overall Comparison

7.1.1 Sys.S

Under Sys.S, students choose their majors after they learn about their �ts. We solve a

planner�s problem, one who aims at maximizing total student welfare by setting college-

speci�c, rather than college-major-speci�c, admission policies.48 The constraints for

the planner include: 1) a student admitted to a higher-tier college is also admitted

to colleges ranked lower, and 2) the planner can use only ability a to distinguish

students. These two restrictions keep our counterfactual experiments closer to the

current practice in Chile in dimensions other than the college-speci�c versus college-

major-speci�c admissions. Restriction 1 prevents the planner from assigning a student

to the college that the planner deems optimal, which is both far from the current

Chilean practice and also may lead to mismatches due to the heterogeneity in student

tastes. Restriction 2 rules out discrimination based on gender or family income.

There are four stages in this new environment:

Stage 1: The planner announces college-speci�c admissions policies:

47The retention rates reported seem to be high for two reasons. First, we focus on the traditional
colleges, which are of higher quality than private colleges. Second, consistent with our data aggrega-
tion, a student is said to be retained in (j;m) if she stays in any speci�c program within our (j;m)
category.
48The planner takes into account tuition and e¤ort costs for the student in her optimization problem.

To maximize social welfare, one would also include other costs of college education, for example, costs
for colleges that are not fully covered by tuition revenue. This will be a relatively straightforward
extension yet one that requires information that is unavailable to us.
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Stage 2: Students make enrollment decisions, choosing one of the colleges they are

admitted to or the outside option:

Stage 3: An enrollee takes courses in majors within her general interests and learn her

e¢ ciency levels in these majors. Then, she chooses one of these majors or drops out.49

Stage 4: Stayers spend one more period studying in the major of choice and then enter

the labor market.

Information and Decision: Sys.S

Stage 1 Stage 2 Stage 3

Info Planner Choice Info Student Choice Info Student Choice

a Admissions x; � College (j) x; �; f�mgm2Ma
One major/Dropout

The planner acts as the Stackelberg leader in this game. Instead of simple unidi-

mensional cuto¤s, optimal admissions policies will be based on the whole vector of

student ability a. To calculate the bene�t of admitting a student of ability a to a

certain set of colleges, the planner has to �rst form expectation of the student�s en-

rollment and major choices, integrating out the student�s characteristics and tastes

that are unobservable to the planner, and the major-speci�c e¢ ciency shocks. Then,

the planner calculates the expected value for this individual and her e¤ect on peer

quality. Peer quality matters both because it a¤ects the market return and because

it a¤ects student e¤ort costs. Overall, the planner�s optimal admissions policies lead

student sorting toward the maximization of total student welfare.50 Online Appendix

B3 contains formal theoretical details.

To compare welfare, one factor that deserves special attention is the potential loss

of major-speci�c human capital due to the delay in specialized training.51 The data we

have does not allow us to predict the exact change in human capital associated with

the shift of admissions regimes because we do not observe the return to partial college

education or student performance in college. However, it is still informative to provide

bounds on welfare gains under Sys.S by considering various possible scenarios. In this

paper, we explore two di¤erent sets of scenarios, one in this section and another in

49In this section, students are free to choose majors. Section 7.2 will explore a case where additional
restrictions are imposed.
50As a caveat, our policy experiments hold the wage functions unchanged. A more comprehensive

model would consider the reactions of labor demand to the new regime, which is beyond the scope of
this paper.
51On the other hand, if the labor market values the width of one�s skill sets, one would expect

greater gains from the new system than those predicted in this paper.
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Section 7.2. In each set, we conduct a series of experiments, solving for new equilibria

to compare with the baseline.

In this section, we assume that to make up for the �rst period (2 years) of college

spent without specialization, students have to spend, respectively, 0, 1 and 2 extra

year(s) in college. Table 10 shows the equilibrium enrollment, retention and student

welfare under the baseline and under Sys.S with di¤erent lengths of college life. In

all cases, postponing major choices increases the overall retention rate from 75% to

around 90% : a signi�cant fraction of dropouts occur in the current system because of

student-major mismatches.52 In the �rst counterfactual case, enrollment increases from

29% to 39%; and the mean student welfare increases by about 4:6 million pesos or 5%.

When one has to spend extra time in college, college enrollment decreases sharply. In

the last case where the �rst period of college contributes only to a student knowledge

about her major-speci�c �ts but not to her marketable skills, the new system causes

a 0:9% welfare loss relative to the baseline. However, we believe the last case to be

overly pessimistic: one is likely to obtain at least some basic skills by taking �rst-year

courses even without specialization.

Table 10 Enrollment, Retention & Welfare: Sys.S

Baseline 0 Extra Year 1 Extra Year 2 Extra Years

Enrollment (%) 29.1 39.1 27.5 19.2

Retention (%) 75.3 91.1 89.2 90.2

Mean Welfare (1,000 Peso) 93,931 98,574 95,185 93,093

7.1.2 Hybrid of Sys.J and Sys.S

Although Sys.S allows students the opportunity to better learn about themselves be-

fore choosing their majors, the extra time cost may outweigh the bene�t for some

students.53 We therefore consider a hybrid system that combines the merits of Sys.J

and Sys.S by allowing students the choice between early and postponed specialization.

This hybrid framework involves the following stages:

Stage 1: The planner announces college-speci�c admissions policies; subject to the

same constraints as in Sys.S.

Stage 2: Students make enrollment decisions: An enrollee chooses between claiming

52If students face uncertainties other than major-speci�c e¢ ciency shocks, for example, shocks that
change the value of college in general, then we might over-predict the retention rate in the new system.
53A discussion about gainers and losers will be provided in the next section.
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a major upon enrollment (specializer), or taking courses in majors within her general

interests (diversi�er).

Stage 3: A specializer learns about her �t in her major and decides whether or not to

drop out. A diversi�er learns her �ts in various majors she has been exposed to and

chooses one of these majors or drops out.

Stage 4: Specializers who chose to stay spend one more period specializing before en-

tering the labor market. Diversi�ers who chose to stay spend n more years specializing

before entering the labor market, where n may be longer than one period.

Information and Decision: Hybrid

Stage 1 Stage 2 Stage 3

Info Planner Choice Info Student Choice Info Student Choice

Non-Enrollee x; � -

a Admissions x; � Specializer (j;m) x; �; �m Stay/Dropout

Diversi�er (j) x; �; f�mgm2Ma
One major/Dropout

Again, we consider three cases under the hybrid policy, where a diversi�er has to

spend 0, 1 or 2 extra year(s) in college, compared to a specializer. The results are shown

in Table 11. For comparison, we list results from the baseline, the hybrid, as well as

the results under Sys.S. Combing the merits of both systems, the hybrid policy leads

to greater welfare gains compared to Sys.S: the higher the time cost for diversi�ers, the

larger the advantages of the hybrid policy. As more students are attracted to colleges

under the hybrid policy, retention rates are lower than those under Sys.S in all cases.

Table 11 Enrollment, Retention & Welfare: Sys.S v.s. Hybrid

Baseline 0 Extra Year 1 Extra Year 2 Extra Years

Sys.S Hybrid Sys.S Hybrid Sys.S Hybrid

Enrollment (%) 29.1 39.1 40.8 27.5 36.2 19.2 34.7

Retention (%) 75.3 91.1 89.2 89.2 80.1 90.2 75.9

Welfare (1,000 Peso) 93,931 98,574 98,857 95,185 96,098 93,093 95,664

How many students choose to specialize early? As the �rst row of Table 12 shows,

it depends critically on the cost of diversi�cation. When diversi�cation involves no

extra time, only 15% enrollees will give up the free opportunity to learn more about

themselves. At the other extreme, when two extra years are at stake, 97% of enrollees
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will choose early specialization. Although it may be costly, diversi�cation does improve

a student�s chance to �nd the right match: college retention rates for diversi�ers are

signi�cantly higher than those for specializers in all cases (Row 2 of Table 12).

Table 12 Enrollment, Retention & Welfare: Hybrid

0 Extra Year 1 Extra Year 2 Extra Years

Specializer Diversi�er Specializer Diversi�er Specializer Diversi�er

% of Enrollees 15.2 84.8 69.0 31.0 96.9 3.1

Retention (%) 79.8 90.9 76.3 88.6 75.5 88.8

7.1.3 Rematch Under Sys.J

Although the same rigid transfer policies are practiced in quite some countries like Chile

and those described in Appendix B4, some other countries (e.g., England) with the

same admissions system are more �exible in terms of transfers. To explore how much

can be gained from such �exibility, the following policy experiment allows students

under Sys.J one chance to rematch after the �rst period in college. The timing under

this policy is:

Stage 1: Students make college-major enrollment decisions, subject to college-major-

speci�c admissions policies:54

Stage 2: A college enrollee in major m observes her major-speci�c e¢ ciency �m, and

chooses to stay, to transfer to a di¤erent college-major pair, or to drop out at the

end the �rst period in college: To prevent arbitrage, we impose the same admissions

standards on transfers.

Stage 3: Students who chose to stay in Stage 2 stay one more period in college and

then enter the labor market. Transfer students observe their major-speci�c e¢ ciency

in their new majors and decide whether to stay and later enter the labor market or to

drop out.

We consider three cases where a transfer student has to spend 0, 1 or 2 extra year(s)

in college, compared to a non-transfer student. Under the 0 and 1 extra year scenarios,

rematch policy leads to smaller improvement over the baseline than Sys.S does. When

two extra years are required, the rematch policy still improves welfare over the baseline,

while Sys.S leads to a welfare loss.
54On the student side, we impose the equilibrium peer quality conditions. On the admissions side, we

impose the same admissions policies used in the current Chilean system. Results from this experiment
are subject to these exogenous admissions policies.
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Table 13 Enrollment, Retention & Welfare: Sys.S v.s. Rematch

Baseline 0 Extra Year 1 Extra Year 2 Extra Years

Sys.S Rematch Sys.S Rematch Sys.S Rematch

Enrollment (%) 29.1 39.1 32.4 27.5 29.5 19.2 29.4

Retention (%) 75.3 91.1 87.7 89.2 82.1 90.2 78.2

Welfare (1,000 Peso) 93,931 98,574 95,651 95,185 94,418 93,093 94,151

7.2 A Closer Look

Wemake a more detailed investigation into the impacts of changes in admission policies,

focusing on the contrast between the baseline Sys.J and Sys.S.

7.2.1 Gainers and Losers

Who is likely to gain/lose when Sys.J switches to Sys.S? To make a more informative

comparison, we hold the average student welfare equalized between the two systems.

To do so, instead of extending college life for all, we take an arguably more realistic

approach and treat majors di¤erently.55 For the two most specialized majors, law and

medicine, students have to spend more time in college in order to make up for the

early non-specialization period. For other majors, the lengths of studies are unchanged

at the cost of potential losses of human capital, the production of which becomes

(1� �)hm(am; Ajm; �m): Thus, � is the fraction of human capital lost ceteris paribus.

Given this framework, we seek the combinations of extra year (in law and medicine)

and � (in other majors) under Sys.S that yield the same average student welfare as

Sys.J. The results are shown in online Appendix B3.56 We �nd that males and students

from low income families are more likely to be gainers than their counterparts, and that

when a student already has a clear comparative advantage as re�ected in her pre-college

abilities, the cost of delayed specialization is likely to outweigh its bene�t.

55For example, in the U.S., for most majors, students receive specialized training only in upper
college years. For law and medicine, specialization usually starts after one has received more general
college training and lasts another 3 to 6 years.
56Each of the following combinations will equalize the welfare: 1) law and medicine majors extend

for 1 year, and � = 23% for other majors; or 2) law and medicine majors extend for 2 years, and
� = 19:5% for other majors.
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7.2.2 Enrollment and Major Choice Distribution

To compare the distributions of student choices, we hold the total enrollment equalized

between Sys.S and Sys.J, which happens when medical and law students spend one

more year in college and � = 8:5% for other majors. Tables 14-16 are based on this

con�guration.

Table 14 displays enrollment and retention rates by tier. Compared to the baseline

case, Sys.S features more students enrolled in both the top tier (Tier 1) and the bottom

tier. What explains the growth of Tier 1 relative to Tier 2? Under the baseline, a

nontrivial fraction of students were eligible to enroll in Tier 1 but only for majors

other than their ex-ante most desirable ones. Among these students, some opted for

their favorite majors in Tier 2 rather than a di¤erent major in Tier 1. Under Sys.S,

the planner still deems (some of) these students suitable for Tier 1, and some of them

will matriculate.57 This is because, regardless whether or not these students eventually

choose their ex-ante favorite majors, given their relatively high ability, enrolling them

in Tier 1 does not have a signi�cant negative e¤ect on peer quality, while the improved

match quality signi�cantly increases the bene�t of doing so.

What explains the growth of Tier 3 relative to Tier 2? Although the total enrollment

remains the same, the composition of enrollees changes as the system shifts. On the

one hand, some former outsiders choose to enroll given the prospect of a better match.

A large fraction of them are students with relatively low ability, whom are deemed

suitable only for hence admitted only to Tier 3 by the planner. On the other hand,

some former enrollees choose the outside option because of the potential loss of either

time or human capital (� = 8:5%). Since one�s outside value increases with one�s

ability, a lot of students in this group are former Tier 2 enrollees who have middle-level

abilities.

Table 14 Enrollment and Retention (%)

Baseline New

Enrollment Retention Enrollment Retention

Tier 1 4.5 79.6 5.1 93.6

Tier 2 14.7 75.5 12.2 92.5

Tier 3 9.9 73.2 11.7 89.3

All 29.1 75.3 29.1 91.4

57Some of these students will opt for a lower-ranked tier due to tastes.
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Table 14 also shows that retention rates in all three tiers improve signi�cantly with

the change of the system. In fact, even the worst case under the new system (Tier 3)

features a retention rate that is 10% higher than the best case under the old system

(Tier 1).

Table 15 displays the distribution of students across majors in the �rst and second

period in college.58 Focusing on the �rst four columns, we see that without major-

speci�c barriers to enrollment, the fraction of students increases signi�cantly in law

and medicine majors. However, enrollment in these two majors are often strictly ra-

tioned regardless of the admissions system. We mimic such rationing by adding one

more constraint to Sys.S: among all enrollees in college j; only those with law-speci�c

(medicine-speci�c) ability that meets a certain cuto¤ have the option to major in law

(medicine). We conduct a series of experiments with di¤erent cuto¤s and report results

from the one where the �nal number of students in each law (medicine) program equals

the number of available slots as proxied by the enrollment size of the corresponding

program under the baseline.

Table 15 Distribution Across Majors (%)

Baseline New Rationed New

1st Period 2nd Period 1st Period 2nd Period 1st Period 2nd Period

Medicine 1.5 1.3 - 3.3 - 1.5

Law 1.1 0.9 - 1.6 - 1.1

Engineering 10.6 7.9 - 7.3 - 7.2

Business 2.9 2.1 - 3.4 - 3.5

Health 3.1 2.4 - 2.8 - 2.6

Science 2.6 1.9 - 3.6 - 3.5

Arts&Social 3.2 2.4 - 2.1 - 2.1

Education 4.1 3.0 - 2.5 - 2.5

All 29.1 21.9 29.1 26.6 26.5 24.1

The last two columns of Table 15 show the equilibrium enrollment with rationing.

By construction, the fraction of students majoring in law (medicine) is cut down to

its capacity. It is not clear a priori how enrollment in unrationed majors may change

58For the �rst period in college, the distribution across majors is de�ned only for the baseline case,
since in the new system students do not declare majors until the second period.
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because two con�icting e¤ects coexist. On the one hand, given total enrollment, enroll-

ments in unrationed majors should increase as rationed-out students reallocate them-

selves. On the other hand, some students who would enroll without rationing may

be discouraged from enrolling at all as they are denied of the option to major in law

and medicine. Indeed, as shown in the last row of Table 15, 2:6% fewer students are

enrolled in the �rst period when rationing is imposed. Due to the dominance of this

second e¤ect, engineering, health and science majors all become smaller compared to

the case without rationing. The only major where the �rst e¤ect dominates is business,

which becomes slightly larger.

7.2.3 Productivity

Table 16 shows the mean log starting wages (in 1,000 pesos) by major, which also

re�ects the average productivity by major. With or without rationing, Sys.S improves

the quality of matches and hence productivity in all majors compared to the baseline.

This is true even though there is a 8:5% loss of human capital ceteris paribus for majors

other than law and medicine.

Table 16 Log Starting Wage

Baseline New Rationed New

Medicine 9.10 9.17 9.18

Law 9.20 9.59 9.63

Engineering 8.97 9.03 9.03

Business 8.51 8.74 8.76

Health 8.38 8.89 8.90

Science 8.36 9.07 9.08

Arts&Social 8.32 8.79 8.80

Education 8.06 8.35 8.35

When enrollment in law and medicine is rationed, the average productivity increases

even further in both majors, which consist of only the very best students. As students

who are rationed out of law and medicine reallocate themselves, two con�icting e¤ects

occur for the average productivity in other majors. On the one hand, some rationed-out

students have higher abilities in multiple majors over an average student, improving the

average productivity in the majors they �ow into. On the other hand, some rationed-

out students are ill suited for other majors, dragging down the average productivity in
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the majors they �ow into. Comparing the last two columns of Table 16, we see that the

resulting changes in the productivity of unrationed majors are marginal. However, at

least in one major we can see the dominance of the second e¤ect: the major of business

gains not only in size (shown in Table 15), but also in average productivity due to the

in�ow of high-ability students.

8 Conclusion

College-major-speci�c admissions system (Sys.J) and college-speci�c admissions system

(Sys.S) both have their advantages and disadvantages, whether or not the total welfare

of students under one system will improve under the alternative system becomes an

empirical question, one that has signi�cant policy implications. However, answering

this question is very di¢ cult since one does not observe the same population of students

under both regimes. In this paper, we have taken a �rst step. We have developed

and estimated an equilibrium college-major choice model under Sys.J, allowing for

uncertainty and peer e¤ects. Our model has been shown to match the data well.

We have modelled the counterfactual policy regime (Sys.S) as a Stackelberg game in

which a social planner chooses college-speci�c admissions policies and students make

enrollment decisions, learn about their �ts to various majors and then choose their

majors. We have shown changes in the distribution of student educational outcomes

and provided bounds on potential welfare gains from adopting the new system. We

have also explored a hybrid of Sys.S and Sys.J that allows students to choose between

early and postponed specialization, which proves to be a very promising admissions

policy regime.59

Although our empirical application is based on the case of Chile, our framework can

be easily adapted to cases in other countries with similar admissions systems. Due to

data limitations, we can only provide bounds on the welfare gains from adopting new

admissions policies. A natural and interesting extension is to model human capital

production explicitly as a cumulative process and to measure achievement at each

stage of one�s college life. This extension would allow for a more precise estimate of

the loss of speci�c human capital due to delayed specialization and hence a sharper

prediction of the impacts on student welfare when the admissions system changes. This

59Given the bene�t of the hybrid system, one might wonder why a lot of countries choose in�exible
systems. This is an important and interesting question that deserves future research.
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extension requires information on student performance in college and/or market returns

to partial college training. With such data, it is also feasible to relax our assumption

about learning speed and model learning as a gradual process where students update

their beliefs about their major-speci�c suitability by observing college performance

overtime.60

Another extension is to introduce heterogeneity across colleges besides their student

quality, which may also a¤ect market returns. One modeling approach is to introduce

exogenous college �xed e¤ect, however, as is true for student quality, college "�xed

e¤ect" is likely to change with admissions regimes, for example, via instructional in-

vestment. Therefore, a more comprehensive model will allow the social planner to

choose college investment together with admissions policies. To implement this exten-

sion, information on college investment becomes necessary.

Finally, one can also incorporate ex-ante unobserved heterogeneity in student abil-

ities into the framework. The planner will need to infer students�ability from their

observed test scores in the making of admissions policies. This extension will be rela-

tively straight forward if the unobserved component of student ability is "private" and

does not a¤ect peer quality. In this case, the unobserved ability will play a role similar

to student�s individual tastes except that the former will directly a¤ect individual�s

wages. If the unobserved component of ability also contributes to peer quality, then

the estimation strategy needs to deal with the fact that the equilibrium objects are no

longer observed from the data.
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Appendix

A1 Detailed Functional Form and Distributional Assumptions
A1.1 Cost of college for students:

Cjm(x;Ajm) = pjm + c1pjmI(y = low) + c2p
2
jmI(y = low) + c3mAjm + c4(Ajm � am)

2;

where pjm is the tuition and fee for program (j;m). c1 and c2 allow for di¤erent tuition

impacts on low-family-income student. c3m and c4 measure the e¤ect of peer quality

on e¤ort costs.

A1.2 The value of the outside option and that of dropout depend on one�s test
scores (s) and one�s family income (y). We assume that the intercepts of outside

values di¤er across income groups, and that the value of dropout is proportional to the

value of the outside option:

V0 (x) =
TX

� 0=1

��
0�1

"
LX
l=1

�ls
l + �01(I(y = high) + �02I(y = low))

#
;

Vd (x) = �V0 (x) :
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A1.3 Idiosyncratic tastes:
For major: each element in �1 is independent and �1m~i:i:d:N(0; �2major):

For programs: �2jm = "j + "jm; where "j~i:i:d:N(�j; �2col) and "jm~i:i:d:N(0; �
2
prog): �j

is the consumption value of college j for an average student.

A1.4 Log wage function:

ln (wm (� ; x; �m; Ajm; �� )) = �0m + �1m� � �2m�
2 + �3mI(female) + ln(hm (am; �m; Ajm)) + �� ;

hm (am; �m; Ajm) = a
1mm A

2m
jm �m:

��~N
�
�0:5�2� ; �2�

�
is an i.i.d. transitory wage shock: Elements in the vector � are

assumed to be i.i.d. and �m~ lnN(�0:5�2�; �2�):61

A2 Adjustment
A2.1 Adjusted Value Functions
The �rst period in college lasts two years for all majors. Letting the total length of

major m be lm; the adjusted second-period value function is given by

ujm(x; �; �mjAjm) =

max

( Plm
� 0=3 �

� 0�3vjm(x; �; Ajm)+PT
� 0=lm+1

��
0�3 [E� (wm(� � lm � 1; x; �m; Ajm; �)) + vm(x; �)]

!
; Vd (x)

)
:

The adjusted �rst-period value function is given by

U(x; �ja�; A) = max

(
max
(j;m)

f�2E�m(ujm(x; �; �mjAjm)) +
2X

� 0=1

��
0�1vjm(x; �; Ajm)g; V0 (x)

)
s:t: E�m(ujm(x; �; �mjAjm)) = �1 if am < a�jm:

A2.2 Empirical De�nitions of !; a� and Retention Rates
1) Programs aggregated in majorm have similar weights !m: In case of discrepancy,

we use the enrollment-weighted average of f!mlgl across these programs.
2) For the cuto¤ a�jm; we �rst calculate the adjusted cuto¤s using weights de�ned in 1)

and then set a�jm to be the lowest cuto¤ among all programs within the (j;m) group.

61Notice that student abilities across majors are correlated, but their e¢ ciency levels are indepen-
dent across the aggregated majors. We make the independence assumption for identi�cation concerns.
Because a student cannot observe � in making enrollment decisions, and because she can only stay
in the major of choice or drop out after the realization of �; the correlation between elements in �
does not a¤ect her decisions and therefore cannot be identi�ed. If e¢ ciency shocks are positively
correlated, we may over-state college retention rates in our counterfactual experiments.
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3) The retention rate in (j;m) is the ratio between the total number of students staying

in (j;m) and the total �rst-year enrollment in (j;m) :

A3 Estimation and Equilibrium-Searching Algorithm
Without analytical solutions to the student problem, we integrate out their un-

observed tastes numerically: for every student x; draw R sets of taste vectors �. The

estimation involves an outer loop searching over the parameter space and an inner loop

searching for equilibria. The algorithm for the inner loop is as follows:

0) For each parameter con�guration, set the initial guess of o at the level we observe

from the data, which is the realized equilibrium.

1) Given o; solve student problem backwards for every (x; �), and obtain enrollment

decision
�
�1jm (x; �ja�; A)

	
jm
:62

2) Integrate over (x; �) to calculate the aggregate fAjmgjm according to (2) ; thus yield-
ing onew:

3) If konew � ok < �; a small number, end the inner loop. If not, o = onew and go to

step 1).

This algorithm uses the fact that all equilibrium objects are observed to deal with

potential multiple equilibria: we always start the initial guess of o at the realized

equilibrium level and the algorithm should converge to o at the true parameter values,

moreover, the realized equilibrium o also serves as part of the moments we target.

62Conditional on enrollment in (j;m) ; the solution to a student�s continuation problem fol-
lows a cuto¤ rule on the level of e¢ ciency shock �m, which yields closed-form expressions for
E�m(ujm(x; �; �mjAjm)): Details are available upon request.
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Additional Tables

1. Data

Table A1.1 Score Weights (!) and Length of Study

Weightsa (%) Length

Language Math GPA Social Sc Science max(Social Sc., Science)b (years)

Medicine 22 30 25 0 23 0 7

Law 33 19 27 21 0 0 5

Engineering 18 40 27 0 15 0 6

Business 21 36 31 0 0 12 5

Health 23 29 28 0 20 0 5

Science 19 36 30 0 15 0 5

Arts&Social 31 23 28 18 0 0 5

Education 30 25 30 0 0 15 5
aWeights used to form the index in admissions decisions, weights on the six components add to 100%:
bBusiness and education majors allow student to use either social science or science scores to form

their indices, students use the higher score if they took both tests.

Table A1.2 College-Major-Speci�c Cuto¤ Index

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 716 679 597 609 640 597 578 602

Tier 2 663 546 449 494 520 442 459 468

Tier 3 643 475 444 450 469 438 447 460

The lowest admissible major-speci�c index across all programs within each tier-major category.

Table A1.3 College-Major-Speci�c Annual Tuition (1,000 Peso)

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 4,546 3,606 4,000 3,811 3,085 3,297 3,086 3,012

Tier 2 4,066 2,845 2,869 2,869 2,547 2,121 2,292 1,728

Tier 3 4,229 2,703 2,366 2,366 2,391 2,323 2,032 1,763

The average tuition and fee across all programs within each tier-major category.
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2. Parameter Estimates
We �x the annual discount rate at 0:9.63 Table A2.1 shows how the value of one�s

outside option varies with one�s characteristics.64 The constant term of the outside

value for a student from a low income family is only 70% of that for one from a high

income family. Relative to a high school graduate, the outside value faced by a college

dropout is about 3% higher.

Table A2.1 Outside Value

Constant (�01) 8919.8 (98.1)

Low Income (�02) 0.70 (0.01)

Language (�1) 131.2 (9.8)

Math (�2) 133.3 (17.0)

Dropout (�) 1.03 (0.01)

Table A2.2 shows major-independent parameters that govern one�s consumption

value: the left panel for college programs and the right panel for majors. Relative to

Tier 3 colleges, Tier 2 colleges are more attractive to an average student, while top-

tier colleges are less attractive.65 The standard deviations of student tastes suggest

substantial heterogeneity in student educational preferences.

Table A2.2 Consumption Value (Major-Independent Parameters)

College Value Major Value

Tier 1 (�1) -3311.1 (248.8) a2m (�2m) 0.011 (0.001)

Tier 2 (�2) 1126.7 (141.1)

�col 3197.1 (386.0) �major 2344.3 (86.1)

�prog 1618.5 (242.8)

�3 is normalized to 0:

Table A2.3 shows major-independent cost parameters. The impact of tuition is

larger for low-family-income students than their counterpart. A student�s costs increase

signi�cantly if her ability is far from her peers.

63Annual discount rates used in other Chilean studies range from 0:8 to 0:96:
64We cannot reject the hypothesis that the outside value depends only on math and language scores,

therefore, we restrict �l for other test scores to be zero.
65One possible explanation is that the two top tier colleges are both located in the city of Santiago,

where the living expenses are much higher than the rest of Chile.
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Table A2.3 College Cost (Major-Independent Parameters)

I(Low Inc)*Tuition (c1) 3.68 (0.19)

I(Low Inc)*Tuition2 (c2) -0.001 (0.0001)

(am � Ajm)
2 (c4) 6.74 (0.61)

Table A2.4 shows parameters in the wage function, other than the e¤ects of own

ability and peer quality. It is worth noting that females earn less than their male

counterparts across all majors, which contributes to the lower college enrollment rate

among females.

Table A2.4 Other Parameters in Log Wage Functions

Constant Experience Experience2 female

Medicine 7.78 (0.02) 0.09 (0.003) -0.002 (0.0001) -0.37 (0.09)

Law -2.63 (0.03) 0.11 (0.004) -0.007 (0.0002) -0.08 (0.03)

Engineering -5.38 (0.01) 0.10 (0.001) -0.002 (0.0003) -0.19 (0.01)

Business -10.67 (0.02) 0.11 (0.001) -0.003 (0.0001) -0.19 (0.02)

Health 2.30 (0.02) 0.02 (0.002) -0.0003 (0.0001) -0.19 (0.02)

Science -10.94 (0.01) 0.05 (0.001) -0.0007 (0.0001) -0.29 (0.03)

Arts&Social -3.80 (0.01) 0.02 (0.001) -0.0005 (0.0001) -0.11 (0.02)

Education -2.23 (0.02) 0.07 (0.002) -0.001 (0.0001) -0.30 (0.04)

Wage Shock (��) 0.683 (0.04)
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B1 Illustration: Gender Di¤erences
To explore the importance of gender-speci�c preferences in explaining di¤erent en-

rollment patterns across genders, we compare the baseline model prediction with a new

equilibrium where females have the same preferences as males.66 Table B1 shows the

distribution of enrollees within each gender in the baseline equilibrium and the new

equilibrium. When females share the same preferences as males, there no longer exists

a major that is obviously dominated by one gender. Some di¤erences between male

and female choices still exist. For example, although college enrollment rate among

females increases from 24:3% to 27:1% (not shown in the Table); it is still lower than

that among males (35:9%) :Moreover, compared with males, females are still less likely

to enroll in medicine and science and more likely to enroll in social science. One rea-

son is that, on average, males have higher test scores than females; and they have

comparative advantage in majors that uses math more than language.67

Table B1 Female Enrollee Distribution

(%) Baseline New

Male Female Male Female

Medicine 6.7 2.9 9.3 6.6

Law 4.0 3.6 3.9 3.6

Engineering 46.3 24.2 45.9 45.7

Business 9.2 10.6 9.2 9.7

Health 4.9 17.9 3.9 4.8

Science 9.8 8.0 9.1 8.4

Arts&Social 11.1 10.8 10.5 12.6

Education 8.0 21.8 8.1 8.5

66The purpose of this simulation is simply to understand the importance of preferences; the simu-
lation ignores potential changes in admission cuto¤s.
67The average math score for males (females) is 572 (547), and the average language score for males

(females) is 557 (553).
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B2 Counterfactual Model Details: Sys.S
B2.1 Student Problem
B2.1.1 Continuation Decision
After the �rst period, a student with ability vector a learn about her �ts to majors

in her interest setMa: Given
�
x; �; f�mgm2Ma

�
and Aj � fAjmgm ; an enrollee in college

j chooses one major of interest or drops out:

uj(x; �; f�mgm2Ma
jAj) =

max

(
max
m2Ma

(
vjm(x; �; Ajm) + E

TX
� 0=3

��
0�2 (wm(� � 3; x; �m; Ajm; �) + vm(x; �))

)
; Vd (x)

)
:

Let �2mjj
�
x; �; f�mgm2Ma

jAj
�
= 1 if an enrollee in j with

�
x; �; f�mgm2Ma

�
chooses

major m:

B2.1.2 Enrollment Decision
We assume that in the �rst period of college, an enrollee pays the averaged cost for

and derives the averaged consumption value from majors within her general academic

interest.68 A student chooses the best among colleges she is admitted to and the outside

option:

U (x; �jq (a) ; A) =

max

(
max
j
f�E�uj(x; �; f�mgm2Ma

jAj) +
1

jMaj
X
m2Ma

vjm(x; �; Ajm)g; V0 (x)
)

s:t: E�uj(x; �; f�mgm2Ma
jAj) = �1 if  j (q (a)) = 0;

where q (a) is the planner�s admissions rule for a student with ability a; and  j (q (a)) =

1 if the student is admitted to college j: Let �1j (x; �jq (a)) = 1 if the student chooses
college j.

B2.2 Planner�s Problem
To formalize the constraint on the planner�s strategy space, we introduce the fol-

lowing notation. Let � � f�1; �2; �3; �4g = f[1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]g ; where
the j-th component of each �n represents the admissions to college j; i.e., �nj = 1

68Presumably, there will be greater welfare gains if students are allowed more �exibility in their
choices of �rst-period courses. Our results provide a lower benchmark for potential welfare gains from
the switch of the admissions system. We leave the extension for future work.
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if a student is admitted to college j: Denote the planner�s admissions policy for stu-

dent with ability a as q (a) ; we restrict the planner�s strategy space to be probabilities

over �. That is, for all a; q (a) 2 Q � �([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]) ; a convex

and compact set. The probability that a student is admitted to college j, denoted as

 j (q (a)), is given by  j (q (a)) =
P4

n=1 qn (a)�nj:

Consistent with the assumptions on student course taking, we assume that in the

�rst period in college, a student with interest setMa will take 1
jMaj slot in eachm 2Ma;

and that in the second period in college, she will take one slot in her chosen major and

zero slot in other majors, where jMaj is the number of majors within the set Ma: Let

z = [y; g] be the part of x that is not observable to the planner, the planner�s problem

reads:

� = max
fq(a)2Qg

�Z
a

eU (ajq (a) ; A) fa(a)da�
where eU (ajq (a) ; A) = R

z

R
�
U (x; �jq (a) ; A) dF� (�) dFz (zja) is the expected utility of

student with ability a; integrating out student characteristics that are unobservable to

the planner.69

For each a; one can take the �rst order conditions with respect to fqn(a)g4n=1 ;
subject to the constraint that q (a) 2 Q. Given the nature of this model, the solution
is generically at a corner with one of the qn (a)�s being one. Thus, we use the following

algorithm to solve the planner�s problem. For each student a; calculate the net bene�t

of each of the four pure strategies ([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]). The (generically

unique) strategy that generates the highest net bene�t is the optimal admissions policy

for this student: Let "�" stand for (q (a) ; A) ; it can be shown that the net bene�t of
applying some q (a) to student with ability a is:

fa(a)

Z
z

Z
�

U (x; �j�) dF�(�)dFzja (z) (3)

+fa(a)
X
j

 j(�)�1j(aj�)
X
m2Ma

(am � Ajm)

jMaj
bm
2mA


2m�1
jm Kjm

�fa(a)
X
j

 j(�)�1j(aj�)
X
m2Ma

(am � Ajm)

jMaj

0@ c3m(1 +
P2

� 0=1 �
� 0�1 �2jm

�1jm
)

+2c4
P2

� 0=1 �
� 0�1 �2jm

�1jm
(Ajm � A0jm)

1A :

69Given that test scores are continuous variables, we nonparametrically approximate Fzja (z) by
discretizing test scores and calculating the data distribution of z conditional on discretized scores. In
particular, we divide math and language test scores each into n narrowly de�ned ranges and hence
generate n2 bins of test scores. All a0s in the same bin share the same Fzja (z) :
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Elements in (3) will be de�ned in the next paragraph. The �rst line of (3) is the

expected individual net bene�t for student a: An individual student has e¤ect on her

peer�s net bene�ts because of her e¤ect on peer quality: the second line calculates her

e¤ect on her peers�market return; the third line calculates her e¤ect on her peers�

e¤ort costs. Peers of student a are those who study in the programs she takes courses

in. Student a0s e¤ect on her peers is weighted by her course-taking intensity 1
jMaj .

To be more speci�c, �1j(aj�) =
R
z

R
�
�1j(x; �j�)dF�(�)dFzja (z) is the probability that

a student with ability a matriculates in college j:  j(�)�1j(aj�) is the probability that
student a is enrolled in college j: �1jm is the size of program (j;m) in the �rst period,

where each student a takes 1
jMaj seat in major m 2 Ma: Ajm is the average ability

among these students.

�1jm =

Z
a

�1j(aj�) j(�)I(m 2Ma)
1

jMaj
fa(a)da;

Ajm =

R
a
 j(�)�1j(aj�)I(m 2Ma)

1
jMajamfa(a)da

�1jm
:

The second line of (3) relates to market return. bm is the part of expected lifetime

income that is common to all graduates from major m:70 Kjm is the average individual

contribution to the total market return among students who take courses in (j;m) :

Kjm �
R
a
 j(�)I (m 2Ma) kjm (a) fa(a)da

�1jm
;

where kjm (a) =

Z
z

e�3mI(female)
Z
�

�1j(x; �j�)
Z
�

�2mjj (x; �; �jAj) a
1mm �mdF� (�) dF�(�)dFzja (z) :

Students with higher am contribute more to the total market return of their peers. The

third line of (3) relates to e¤ort cost. �2jm is the size of program (j;m) in the second

period: A
0
jm is the average ability among students enrolled in (j;m) in the second

70bm = E
�
e�
�PT

� 0=3 �
� 0�1e(�0m+�1m(�

0�3)��2m(� 0�3)2), so that the expected major-m market value
of student with ability a can be written as

bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj)h (am; Ajm; �) dF� (�) dF�(�)dFzja (z)

= bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj) a
1mm A

2m
jm �mdF� (�) dF�(�)dFzja (z)

= bmA

2m
jm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj) a
1mm �mdF� (�) dF�(�)dFzja (z) :
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period. Formally,

�2jm =

Z
a

�1j(aj�) j(�)�2mjj (aj�) fa(a)da;

A0jm =

R
a
 j(�)�1j(aj�)�2mjj (aj�) amfa(a)da

�2jm
;

where �2mjj (aj�) =
R
z

R
� �

1
j (x;�j�)

R
� �

2
mjj(x;�;�)dF�(�)dF�(�)dFzja(z)

�1j (aj�)
is the probability that student

a will take a full slot in (j;m) in the second period conditional on enrollment in j:

B2.3 Equilibrium

De�nition 2 An equilibrium in this new system consists of a set of student enroll-

ment and continuation strategies
n
�1j(x; �jq (a) ; A);

�
�2mjj(x; �; f�mgm2Ma

jAj)
	
m

o
j
; a

set of admissions policies fq� (a)g ; and a set of program-speci�c vectors f
jmgjm ��
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
; such that

(a)
�
�2mjj(x; �; f�mgm2Ma

jAj)
	
m
is an optimal choice of major for every (x; �; f�mgm2Ma

)

and Aj;

(b)
�
�1j (x; �jq (a) ; A)

	
j
is an optimal enrollment decision for every (x; �) ; for all q (a)

and A;

(c) q� (a) is an optimal admissions policy for every a;

(d) f
jmg is consistent with fq� (a)g and student decisions.

B2.3.1 Equilibrium-Searching Algorithm:
We use the same random taste vectors � for each student as we did for the es-

timation. In the new model, student continuation problem does not have analytical

solutions, so we also draw K sets of random e¢ ciency vectors �. Finding a local

equilibrium can be viewed as a classical �xed-point problem, � : O ) O; where

O =
�
[0; 1]� [0; 1]�

�
0; A

�
�
�
0; A

�
�
�
0; K

��JM
; o = 
jm 2 O: Such a mapping ex-

ists, based on this mapping, we design the following algorithm to compute equilibria

numerically.

0) Guess o = f
jmgjm �
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
:

1) Given o; for every (x; �) and every pure strategy q (a) ; solve the student problem

backwards, where the continuation decision involves numerical integration over e¢ -

ciency shocks �: Obtain �2mjj (x; �jq (a)) and �1j (x; �jq (a)) :
2) Integrate over (�; z) to obtain �2mjj (ajq (a)) ; �1j (ajq (a)) and eU (ajq (a) ; A) :
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3) Compute the net bene�t of each q (a) ; and pick the best q (a) and the associated

student strategies. Do this for all students, yielding onew:

4) If konew � ok < �; where � is a small number, stop. Otherwise, set o = onew and go

to step 1).

B2.3.2 Global Optimality
After �nding the local equilibrium, we verify ex post that the planner�s decisions

satisfy global optimality. Since it is infeasible to check all possible deviations, we

use the following algorithm to check global optimality.71 Given a local equilibrium

o =
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
; we perturb o by changing its components for a

random program (j;m) and search for a new equilibrium as described in B2.3.1. If

the algorithm converges to a new equilibrium with higher welfare, global optimality is

violated. After a substantial random perturbations with di¤erent magnitudes, we have

not found such a case. This suggests that our local equilibrium is a true equilibrium.

B3 A Closer Look at Sys.S: Gainers and Losers
The two combinations that equalize student welfare between the Sys.J and Sys.S

are either 1) law and medicine majors extend for 1 year, and � = 23% for other majors;

or 2) law and medicine majors extend for 2 years, and � = 19:5% for other majors.

Table B2 Di¤erent Treatments Across Majors

Baseline Combination 1 Combination 2

Extra Years in Law & Med - 1 2

�: Loss in Other Majors (%) - 23.0 19.5

Enrollment (%) 29.1 22.7 22.3

Mean Welfare (1,000 Peso) 93,931 93,934 93,935

To illustrate who are more likely to gain/lose, we generate an indicator variable

that re�ects whether the change in a student welfare is positive, zero or negative.

Then, we run an ordered logistic regression of this indicator on student observable

characteristics, controlling for their idiosyncratic tastes, drawn from the distribution

according to our estimates. Table B3 shows the regression results for Combination 2,

the results for Combination 1 are qualitatively similar. Males and students from low

income families are more likely to be gainers than their counterparts. Students with

higher math scores are more likely to gain, while neither language score nor high school

71Epple, Romano and Sieg (2006) use a similar method to verify global optimality ex post.
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GPA has signi�cant e¤ects. A welfare loss is more likely for students with higher score

in their track-speci�c subjects (science or social science) and for those with a larger

gap between language score and math score. In other words, when a student has a

clear comparative advantage, the cost of delayed specialization is likely to outweigh its

bene�t.

Table B3 Welfare Gain and Student Characteristics

Female Low Income Language
1000

Math
1000

HSGPA
1000

Subject
1000

(language�math)2
1000

Coe¢ cient -0.46�� 0.28�� -0.12 1.18� -0.17 -1.36� -0.018��

Std. Dev. 0.08 0.07 0.56 0.53 0.44 0.54 0.0035

Ordered logistic regression, dependent variable in order: positive/zero/negative welfare change.

Control for student idiosyncratic tastes.
� signi�cant at 5% level, �� signi�cant at 1% level.

B4. Other Examples of Sys.J72

B4.1 China (Mainland)
1. High School Track: Students choose either science or social science track in the

second year of high school and receive more advanced training corresponding to the

track of choice.

2. College Admissions: At the end of high school, college-bounding students take

national college entrance exams, including three mandatory exams in math, Chinese

and English, and track-speci�c exams. A weighted average of the national exam scores

forms an index of the student, used as the sole criterion for admissions. College ad-

missions are college-major speci�c: a student is admitted to a college-major pair if her

index is above the program�s cuto¤.73

3. Transfer Policies: Transfers across majors are either near impossible (e.g., be-

tween a social science major and a science major) or very rare (e.g., between similar

majors).74

72Major Sources of Information: 1. "Survey of Higher Education System" (2004), OECD Higher
Education Programme, 2. OECD Reviews of Tertiary Education (by country), 3. Department of
Education (by country), 4. Websites of major public colleges in each country.
73The cuto¤s may be di¤erent based on the student�s home province.
74In 2001, Peking University started a small and very selective experiment program which admits

students to two broad areas (social science or science) according to their high school track. Students
are free to choose majors within their areas in upper college years.
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B4.2 Japan
1. High School Track: similar to the case in B5.1.

2. College Admissions: Students applying to national or other public universities

take two entrance exams. The �rst is a nationally administered uniform achievement

test, which includes math, Japanese, English and speci�c subject exams. Di¤erent

college programs require students to take di¤erent subject exams. The second exam

is administered by the university that the student hopes to enter. A weighted average

of scores in various subjects from the national test forms the �rst component of the

admissions index; a weighted average of university-administered exam scores forms the

other. The �nal index is a weighted average of these two components. College admis-

sions are college-major speci�c in most public universities, except for the University of

Tokyo, which uses category-speci�c admissions (there are six categories, each consists

of a number of majors).

3. Transfer Policies:

1) University of Tokyo: Students choose one major within the broad category in their

sophomore year. After that, a student can transfer to a di¤erent major within her

current category but only with special permission and she has to spend one extra year

in college, besides meeting the grade requirement of the intended major. Transfer

across categories is rarely allowed.

2) Other public universities: Changing majors is normally possible only with special

permission at the end of the sophomore year, and it may require much make-up or an

extra year in college.

B4.3 Spain
1. High School Track: similar to the case in B5.1, but with three tracks to choose

from: arts, sciences and technology, and humanities and social sciences.

2. College Admissions: All public colleges use the same admissions procedure.

College-bounding students take the nation-wide Prueba de Acceso a la Universidad

(PAU) exams, which consist of both mandatory exams and track-speci�c exams. Ad-

missions are college-major speci�c, and the admissions criterion is a weighted average

of student high school GPA and the PAU exam scores.

3. Transfer Policies: Transfers across majors require that the student have accu-

mulated a minimum credit in the previous program that is recognized by the intended

program, where the recognition depends on the similarity of the contents taught in

the two programs. Transfers across similar majors can happen, although not common,
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in which cases, the student usually has to spend one extra year in college. Transfers

across very di¤erent majors are rarely allowed.

B4.4 Turkey
1. High School Track: Students in regular high schools choose, in their second

year, one of four tracks: Turkish language�Mathematics, Science, Social Sciences, and

Foreign Languages. In Science High Schools only the Science tracks are o¤ered.

2. College Admissions: Within the Turkish education system, the only way to enter

a university is through the Higher Education Examination-Undergraduate Placement

Examination (YGS-LYS). Students take the Transition to Higher Education Examina-

tion (YGS) in April. Those who pass the YGS are then entitled to take the Undergrad-

uate Placement Examination (LYS) in June, in which students have to answer 160 ques-

tions(Turkish language(40), math(40), philosophy(8), geography(12), history(15), reli-

gion culture and morality knowledge(5), biology(13), physics(14) and chemistry(13))

in 160 minutes. Only these students are able to apply for degree programs. Admis-

sions are college-major speci�c and students are placed in courses according to their

weighted scores in YGS-LYS.

3. Transfer Policies: Most universities require a student meet strict course and

GPA requirement and provide faculty reference in order to transfer majors. In a few

universities, the transfer policies are more �exible. However, transfers across very

di¤erent majors are near infeasible and transfers across similar majors are uncommon

as well.

B5 Proof of Existence in a Simpli�ed Baseline Model
Assume there are two programsm 2 f1; 2g and a continuum of students with ability

a 2
�
0; A

�2
that are eligible for both programs. Let the average ability in program j

be Am. The utility of the outside option is normalized to 0. The utility of attending

program 1 is v1(a;A1) for all who have ability a; and v2(a;A2) � �, where � is i.i.d.

idiosyncratic taste, a continuous random variable.75

De�nition 3 A sorting equilibrium consists of a set of student enrollment strategies

f�m(a; �j; �)gm ; and the vector of peer quality A = [A1; A2] ; such that
75It can be shown that conditional on enrollment in a program, the solution to a student�s con-

tinuation problem follows a cuto¤ rule on the level of e¢ ciency shock �m, which yields closed-form
expressions for E�m(u(a; �; �mjAm)). As such, vm (�) can be viewed as the net expected utility of enroll-
ment, i.e., the di¤erence between E�m(u(a; �; �mjAm)) and the cost Cm (am; Am) ; both are continuous
functions. Details are available upon request.
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(a) f�m (a; �jA)gm is an optimal enrollment decision for every (a; �) ;
(c) A is consistent with individual decisions such that, for m 2 f1; 2g ;

Am =

R
a

R
�
�m(a; �jA)amdF� (�) dFx(x)R

a

R
�
�m(a; �jA)dF� (�) dFx(x)

: (4)

Proposition 1 A sorting equilibrium exists.

Proof. The model can be viewed as a mapping

� : O ) O;

where O =
�
0; A

�2
; o = [A1; A2] 2 O:

1) The domain of the mapping O =
�
0; A

�2
is compact and convex.

2) Generically, each student has a unique optimal enrollment decision. In particular,

let �� (a;A) � v2 (a;A2)�max f0; v1 (a;A1)g

� (a; �jA) =

8><>:
[0; 1] if � < �� (a;A)

[1; 0] if v1 (a;A1) > 0 and � � �� (a;A)

[0; 0] if v1 (a;A1) � 0 and � � �� (a;A)

9>=>; :

Given that both va (a;Aa) 2 R are continuous functions of (a;A) ; so aremax f0; v1 (a;A1)g
and �� (a;A) :

3) Given the result from 2), the population of students with di¤erent (a; �) can be aggre-

gated continuously into the total enrollment in programm via
R
a

R
�
�m(a; �jA)dF� (�) dFx(x)

and the total ability inm via
R
a

R
�
�m(a; �jA)amdF� (�) dFx(x); hence the right hand side

of (4) ; being a ratio of two continuous functions, is continuous in A. That is, the map-

ping � is continuous.

4) "Every continuous function from a convex compact subset K of a Euclidean space

to K itself has a �xed point." (Brouwer�s �xed-point theorem)

In the full model, where there are more than two programs and the taste shock is

a vector, there will be cuto¤ hyperplanes. It is cumbersome to show, but the logic of

the proof above applies.
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Model Fit

Table B4 Enrollment (Low Income) (%)

Data Model

Tier 1 2.3 2.6

Tier 2 12.6 12.4

Tier 3 9.7 9.7

Enrollment among students with low family income.

Table B5 Enrollee Distribution Across Majors (Low Income) (%)

Data Model

Medicine 1.7 3.0

Law 3.4 3.2

Engineering 35.1 34.8

Business 10.0 9.9

Health 12.2 10.4

Science 8.2 9.6

Arts&Social 11.0 12.6

Education 18.5 16.4

Distribution across majors among enrollees with low family income.

Table B6 Mean Test Scores Among Outsiders

Data Model

Math 533 531

Language 532 532

HS GPA 542 541

Max(Science, Soc Science) 531 530

Mean test scores among students who chose the outside option.

51



Figure 1: Average Wage by Major and Experience
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