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Abstract. I study the problem of a government with low credibility, who decides to
make a reform to remove ex-post time inconsistent incentives due to lack of commitment.
The government has to take a policy action, but has the ability to commit to limiting
its discretionary power. If the public believed the reform solved this time inconsistency
problem, the policy maker could achieve complete discretion. However, if the public does
not believe the reform to be successful, some discretion must be sacrificed in order to induce
public trust. With repeated interactions, the policy maker can build reputation about her
reformed incentives. However, equilibrium reputation dynamics are extremely sensitive to
assumptions about the publics beliefs, particularly after unexpected events. To overcome
this limitation, I study the optimal robust policy that implements public trust for all beliefs
that are consistent with common knowledge of rationality. I focus on robustness to all
extensive-form rationalizable beliefs and provide a characterization. I show that the robust
policy exhibits both partial and permanent reputation building along its path, as well as
endogenous transitory reputation losses. In addition, I demonstrate that almost surely
the policy maker eventually convinces the public she does not face a time consistency
problem and she is able to do this with an exponential arrival rate. This implies that as we
consider more patient policy makers, the payoff of robust policies converge to the complete
information benchmark. I finally explore how further restrictions on beliefs alter optimal
policy and accelerate reputation building.

JEL Classification Codes: E58, D81, D82, D83

1. Introduction

In the mind of policy makers, a reputation for credibility is a delicate and hard-won
situation. Policy shifts are discussed with great care and concerns regarding how the public
will react. By contrast, formal models of reputation employing insights from repeated games
typically assume a perfect degree of certainty and coordination. The purpose of this paper
is to build on this literature to model reputation in a way that reflects the uncertainty faced
by policy makers.
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Following the seminal papers of ? and ?, macroeconomic theory has extensively stud-
ied the so-called time inconsistency problem of government policy. In essence, all time
inconsistency problems consist of an authority who needs some agents in the economy (e.g.,
consumers, financial sector) to trust her with a decision that will be taken on their behalf.
In the canonical example of monetary policy, a policy maker wants the public to trust her
announcements of inflation policy. The fundamental problem resides in the fact that even
if the decision maker is allowed to announce what policy she plans to take, the agent’s deci-
sion to trust decision ultimately depends on their perception or beliefs about the (ex-post)
incentives the policy maker will face after they trust her. This creates a wedge between the
ideal policies the authority would want to implement and the ones that she can credibly
promise. In the context of our inflation example, since agents know that the government
will have ex-post incentives to boost employment by increasing inflation and reducing real
wages, this will result in an inefficiently high equilibrium inflation.

The literature has dealt with this problem in two ways. First, some authors have argued
that the government should forfeit some flexibility through a formal arrangement (e.g., infla-
tion targeting/caps and tax restrictions). Second, others have argued that the government
should modify its incentives, either by having reputational concerns through repeated inter-
actions (?? and ???) or by delegating the decision to an agency with different incentives
that will limit its time inconsistency bias. Examples of such delegation include appointing
a conservative central banker (?) or making the monetary authorities subject to a formal or
informal incentive contract (?, ?, ?). If full commitment to contingent policies is not avail-
able and flexibility is socially desirable, these “incentive reforms” may become a desirable
solution. The key difference between both approaches is that policies that are enforced by
incentive reforms are very sensitive to the assumption that the public knows exactly what
the reformed incentives are. If the public believed that with a high enough probability,
the government still has a time inconsistency problem, then the situation would remain un-
solved. I will model this uncertainty as the public having incomplete information about the
policy makers incentives, as in ??, but also allowing the public to have uncertainty about
the governments expectations for the continuation game. The main goal of our paper will
be to investigate if, through repeated interactions, the government can convince the public
about its reformed incentives.

Using equilibrium analysis to answer this question typically relies on rather strong com-
mon knowledge assumptions as to how agents play, their priors on the government’s type, as
well as how all parties revise their beliefs. In the particular case of repeated games, predic-
tions of a particular equilibrium may be extremely sensitive to assumptions as to how agents
update their expectations about the continuation game on all potential histories that might
be observed. These are complicated, high dimensional objects, of which the policy maker
may have little information about. This may be due to the difficulty in eliciting both the
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higher order beliefs from the public as well as contingent beliefs on nodes that may never
be reached.

The approach I use is conceptually related to the robust mechanism design literature
(??).The policy is required to implement trust along its path for all feasible agent beliefs
within a large class. The class of beliefs that are deemed feasible is crucial to our exercise,
since a larger set makes the analysis more robust, a smaller set makes it trivial; the feasible
set I consider is discussed below. I study the case where the only constraints on the sets
of beliefs are that they are consistent with common certainty of rationality: every agent
knows that the other agents are rational, they know everyone knows this, and so on. This is
the rationale behind rationalizability, which consists on an iterative deletion of dominated
strategies. The present analysis requires beliefs to be such that agents not to question the
government’s rationality, unless proven otherwise, which is given by the solution concept of
strong or extensive-form rationalizability of ??.

I show that this policy exhibits endogenous transitory gains and losses of reputation.
Moreover, the policy achieves permanent separation (i.e. public is convinced about the
success of the reform from then on) almost surely and it does so with an exponential arrival
rate. As the discount factor of the policy maker increases, the expected payoff of this robust
policy approximates the full commitment first-best benchmark. This policy will also be
the max-min strategy for the policy maker regardless of their particular beliefs and hence
provides a lower bound both for payoffs as well as the speed of separation of any strategy
that is consistent with extensive form rationalizability.

To understand the intuition behind the results, suppose the public hypothesizes that he
faces a time inconsistent policy maker and has observed her taking an action that did not
maximized her spot utility. To fix ideas, suppose she took an action such that, if she was the
time inconsistent type, gave her 10 utils. Meanwhile, she could have reacted in a manner
that gave her 25 in spot utility instead. The implied opportunity cost paid by her would
only be consistent with her being rational if she expected a net present value of at least 15
utils, and therefore the opportunity cost paid would have been a profitable investment. This
further implies that the government beliefs and planned course of action from tomorrow
onward must deliver (from the government’s point of view) more than 15 utils, which is a
constraint that rationality imposes on the goverment’s expected future behavior. If however,
the maximum feasible net present value attainable by a time inconsistent government was 10
utils, the public should then infer that the only possible time inconsistent type that they are
facing is an irrational one. However, if such a history was actually consistent with the policy
maker being time consistent (e.g. she had an opportunity cost of 2) then the public should
be fully convinced from then on that they are facing the reformed government. Therefore,
the implied spot opportunity cost paid by the time inconsistent type will be a measure of
reputation that places restrictions on what the public believes the policy maker will do in the
future. I emphasize that this will be independent of their particular beliefs and relies only
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on an assumption of rationality. I also show that this is in fact the only robust restriction
that strong common certainty of rationality imposes, making the implied opportunity cost
paid the only relevant reputation measure in the robust policy. Moreover, I show that the
optimal robust policy can be solved as a dynamic contracting problem with a single promise
keeping constraint, analogous to ?, ? and ? in the context of optimal risk sharing with
limited commitment, which makes the analysis of the optimal robust policy quite tractable.

The rest of the paper is organized as follows. Section 2 describes two macroeconomic
applications of time inconsistency, monetary policy and capital taxation, which are informed
by our theoretical results. Section 3 provides a brief literature review. Section 4 introduces
the stage binary action repeated game, and introduces the concepts of weak and strong
rationalizability. Section 5 defines the concept of robust implementation and studies robust
implementation for all weak and strong rationalizable outcomes. In section 6 I study the
basic properties of the optimal robust strategy and the reputation formation process as
well as the limiting behavior as policy makers become more patient. I also study how
further restrictions on the set of feasible beliefs can help accelerate the reputation formation
process and in particular find a characterization of restrictions that generate monotone
robust policies (i.e. policies that exhibit only permanent gains of reputation on its path).
In Section 7 I study some extensions to our model and discuss avenues for future research.
Finally, Section 8 concludes.

2. Examples

I start with some time-inconsistency examples from the literature and use them to moti-
vate my model and analysis. I focus on two of the most commonly studied questions in the
macroeconomic literature: capital taxation and monetary policy. I will illustrate that even if
the policy maker undertakes a reform that solves for her time inconsistent bias, when agents
have imperfect knowledge about the government objectives, a time inconsistency problem
of government policy arises.

2.1. Capital Taxation. I use a modified version of ? and ?, where the time inconsistent
type is a benevolent goverment, instead of just opportunistic. Consider an economy with two
type of households: workers (w) and capitalists (k). There is a continuum of measure one
of identical households, for each type. Capitalist households have an investment possibility
and can invest q ∈ [0, q] units in a productive technology with a constant marginal benefit
of 1 and a constant marginal cost of I. Workers do not have access to this technology and
can only consume their own, fixed endowment of e > 0.

There is also a public good that can be produced by a government that has a marginal
value of zk to capitalist households and zw to workers, where z = (zk, zw) is a joint random
variable. The government taxes a portion τ (z) of capital income after the shock is realized,
in order to finance the production of r (z) units of public good. Given the expected policy



CREDIBLE REFORMS: A ROBUST IMPLEMENTATION APPROACH 5

{τ (z) , r (z)}z∈Z , workers and capitalists households utilities are given by

(2.1) Uw = e+ Ez [r (z) zw]

(2.2) Uk = (1− τ e) q − Iq + Ez [r (z) zk]

where τ e = E [τ (z)]. A leading example is the case where the “public good” is simply
redistribution from the capitalists to the workers. In this case zw > 0 and zk = 0.

The optimal investment decision for a capitalist is to invest qi = q if 1 − τ e < I, and 0
otherwise, since they do not internalize their marginal effect on the production of public good.
As a benchmark, we will first solve for the policy {τk (z) , rk (z)}z∈Z that maximizes only
the capitalist households expected utility, subject to the government’s budget constraint:

(2.3) max
q∈[0,q],τk(·),rk(·)

(1− E [τk (z)]) q − Iq + E [rk (z) zk] s.t. rk (z) ≤ τk (z) q for all z

Given q, the optimal policy involves full expropriation (τk (z) = 1, rk (z) = q) when zk ≥ 1
and zero taxes otherwise, which induces an expected tax rate of τ e = Pr (zk ≥ 1). If

(2.4) I < Pr (zk ≤ 1)

then households expecting policy {τk (z) , rk (z)}z∈Z will choose q = q. However, this will
not be the policy chosen by a benevolent government that also values workers. After the
households investment decision, and the state of nature has been realized, the government
chooses public good production r̃ and tax rate τ̃ to solve:

(2.5) max
r̃,τ̃

r̃ (zk + αzw) + (1− τ̃) q s.t. r̃ ≤ τ̃ q

where α ≥ 0 is the relative weight that the government puts on workers welfare.
Defining zg := zk + αzw, the marginal value of the public good between capitalists

and the government will typically be different, unless α = 0. Solving 2.5 gives τ eg =
Pr (zk + αzw > 1). I will assume that I > Pr (zk + αzw ≤ 1) , so capitalist households
will optimally decide not to invest (q = 0) and no public good production will be feasible.
Finally, I assume that the parameters of the model are such that a benevolent government
would want to commit to the capitalist’s most preferred policy {τk (z) , rk (z)}z∈Z if she was
given the possibility. 1

To solve the “time inconsistency” problem, I first explore the possibility of introducing a
cost to raise taxes. This means that if taxes are increased, the government has to pay a cost
of c > 0. The government would then optimally choose taxes τ = 0 and increase them only
when needed. She solves

max
r̃,τ̃

r̃ (zk + αzw)− 1 {τ̃ > 0} c s.t. r̃ ≤ τ̃ q.

1This happens if Pr (zk > 1)E (zk + αzw | zk > 1) + Pr (zk ≤ 1) > 0.
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In this case, the expected tax rate is now τ e (c) = Pr
(
zk + αzw >

c
q

)
. By setting c = c to

solve 1− τ e (c) = I, the time inconsistent government can now induce households to invest,
by credibly distorting its tax policy.

Another way to deal with the problem is to make an institutional reform and delegate
the public good provision to a different policy maker, who has incentives aligned with the
capitalist households. The new policy maker type now solves

max
r̃,τ̃

r̃ (zk + αnewzw) + (1− τ̃) q s.t. r̃ ≤ τ̃ q.

By introducing a “pro-capitalist government” with αnew = 0, the capitalists most desirable
policy {τk (z) , rk (z)}z∈Z would be credibly implemented without the need of setting a cost
to increase capital taxes. Under some parametric assumptions, it will be socially desirable
for the benevolent government (without taken into account the commitment cost payed) to
delegate policy making to the “pro-capitalist” type that does not need to impose tax increase
costs to convince households to invest2.

However, if households were not convinced that they are indeed facing a reformed, pro-
capitalist government, they will need some assurance (i.e. some restrictions to ex post
increase taxes) in order to trust that the government will not expropriate their investments
too often. In ?, the analog to a pro-capitalist type is a commitment type (as in ?) that
always pick the same tax rate. In ?, the government can make announcements, and can
be either a committed type (i.e. one that is bound by the announcement) or a purely
opportunistic type that may choose to deviate from the promised policy, which is analog to
the benevolent type in our setting.

Formally, Let π ∈ (0, 1) be the probability that capitalist households assign to the new
government to actually be a pro-capitalist type. Then, if there is complete flexibility to
increase taxes, the expected tax rate would be

(2.6) τ e (π) = πPr (zk > 1) + (1− π) Pr (zk + αzw > 1)

Condition 2.6 implies that for sufficiently low π, we would have 1−τ e (π) < I and capitalists
will decide not to invest. Thus, as long as capitalists perceive that the new government
might still be time inconsistent (modeled by a low π), it will be necessary to set some cost
to raise taxes in order to induce capitalists to invest, even though the government is now a
pro-capitalist type.

2.2. Monetary Policy. I use the framework in ?3. I assume that total output (in logs) yt
depends negatively on the real wage and some supply side shock zt, according to

(2.7) yt = y − [wt − pt (zt)]− zt

2This happens if Pr (z > 1)E (zk + αzw | zk > 1)+Pr (zk ≤ 1) > Pr
(
zk + αzw >

c
q

)
E
(
zk + αzw | zk + αzw >

c
q

)
+

Pr (zk + αzw ≤ 1)
3Section 9.5, pp 634-657.
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where y is the flexible price equilibrium level, zt is a supply shock with E (zt) = 0 and pt (zt)
is the nominal price level at time t set by the monetary authority. In equilibrium, nominal
wages are set according to wt = Et−1 [pt (zt)], to match expected output to its natural level
y. A benevolent monetary authority observes the shock zt and decides the inflation level
in order to minimize deviations of output with respect to a social optimal output y∗ and
deviations of inflation from a zero inflation target:

(2.8) L = 1
2 (yt − y∗t )

2 + χ

2 π
2
t .

I assume that k := y∗t − y > 0. This measures the wedge between the output level
targeted by authorities and the natural level of output, which are different due to market
inefficiencies, even under flexible prices.4 Defining inflation as πt (zt) := pt (zt) − pt−1, and
using equation 2.7, together with the wage setting rule, the loss function simplifies to

(2.9) L (π, πe, z) = 1
2 [π − πe − z − k]2 + χ

2 π
2,

where πe = E [π (z)] are the expectations formed by the private sector about inflation (which
should be correct under rational expectations). The full commitment benchmark, in which
the monetary authority can commit, ex-ante, to a state contingent inflation policy π (z), to
solve

min
π(·),πe

L (π, πe, z) s.t: πe = E [π (z)]

with solution

(2.10) πc (z) = z

1 + χ
and πe = Ez [πc (z)] = 0.

In contrast, when the monetary authority cannot commit to a state contingent policy, con-
ditional on πe and z, she chooses π to solve:

(2.11) min
π∈R
L (π, πe, z) ⇐⇒ πnc (z) = πe + z + k

1 + χ

By taking expectations on both sides of 2.11 we get πe = k
χ , which I will refer to the time

inconsistency bias. Equilibrium inflation is then

(2.12) πnc (z) = k

χ
+ πc (z)

Output y (z) is identical in both cases, for all shocks. However, E
[
π2
nc (z)

]
= E

[
π2
c (z)

]
+ k2

χ2

so the outcome with no commitment is strictly worse than the full commitment benchmark.
How can the monetary authority solve this problem? A first approach is to formally

limit the flexibility of monetary policy by restricting the set of inflation levels the monetary

4See ? and ? for a discussion of such potential inefficiencies.
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authority can choose from. ? show that this can be optimally done by choosing an inflation
cap π5, such that π (z) ≤ π for all z. Inflation policy is now

π (z | π) = min
{
πe (π) + z + k

1 + χ
, π

}
where πe (π) solves the fixed point equation πe (π) = Ez

[
min

{
πe(π)+z+k

1+χ , π
}]

.
An alternative approach, first suggested by ?, is to introduce institutional reforms to the

monetary authority, with the purpose of alleviating the time inconsistency bias by inducing
changes in their preferences. Imagine first that the government can delegate the monetary
policy to a policy maker type θ = new, that wants to minimize a modified loss function

(2.13) Lnew (π, πe, z) = 1
2 [π − πe − z − knew]2 + χnew

2 π2

? suggests placing a “conservative central banker”, that has knew = k but χnew > χ, so
that it places a greater importance on inflation stabilization than society does. From 2.12
we see that increasing the weight χ makes the effective inflation bias smaller, and hence
may alleviate the time inconsistency problem at the expense of a milder reaction to supply
shocks, as evidenced by equation 2.11.

By setting knew = 0 the optimal policy with no commitment for θ = new would implement
the full commitment solution. This would correspond to having a monetary authority that
believes there are no market inefficiencies and wants to stabilize output around its flexible
price equilibrium level y. The same outcome can be implemented if, instead of changing the
preference parameters, we add a linear term to the loss function:

Lnew = L+ α [ηπ]

? and ? argue that this can be done by offering a contract to the central bank governor.
This can be either a formal monetary contract6 or an informal relational contract under
which realized levels of inflation affect the continuation values for the monetary authority
(e.g. the governor could be fired if inflation reaches sufficiently high levels, as in ?). Here
α > 0 represents the relative weight of his self-interest payoffs relative to the social welfare.
By picking η = k

α the full commitment inflation policy would be implemented.

5In their paper, ? solve for the optimal dynamic mechanism for a time inconsistent policy maker, that has
private information about the state of the economy, which is i.i.d across periods, and show that any optimal
mechanism exhibits a constant inflation cap in all periods. In a static setting, shocks can be thought as
private information for the monetary authority, so an inflation cap would also be a characteristic of the more
general mechanism design problem:

max
π(·),πe

Ez [L (π (z) , πe, z)]

s.t : L [π (z) , πe, z] ≥ L
[
π
(
z′
)
, πe, z

]
for all z, z′ ∈ Z

6Suppose the monetary authority minimizes L̂old = Lold−αu [φ (π)] where φ (π) is a monetary reward function
depending on realized inflation, and α > 0 of monetary incentives relative to the monetary authorities
“benevolent” incentives. See that by picking φ (π) = u−1 (−ηπ), a decreasing function of inflation, the
contract will induce the linear component in 2.13, which coincides with the optimal contract in this setting.
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While the institutional reform route may seem desirable, these institutional reforms may
not be perfectly observed by the private sector. The public might not be convinced that the
monetary authority is now more conservative or have a smaller time inconsistency bias than
the previous one. Such a problem is likely to be particularly acute because these are changes
in preferences, which involve either delegation or perhaps informal relational contracts that
are imperfectly observed. If this was the case, restrictions such as inflation caps might still
be necessary. For example, take the institutional reform with knew = 0, and no inflation caps
are set. If the public assigns probability µ ∈ (0, 1) to the incentive reform being successful,
expected inflation would then be

πe = (1− µ) k
χ
> 0

Thus, as long as the public perceives there might still be a time inconsistency bias, insti-
tutional reforms might not be enough, and inflation caps might be necessary to implement
smaller inflation expectations. The literature has studied the case of

3. Literature Review

The literature on time inconsistency of government policy is extensive, beginning with
the seminal papers by ? and ?, where the idea of the commitment solution (i.e. choosing
policy first) was first introduced. The reputation channel was first explored by ? and ?,
who studied policy games in which a rational (albeit time inconsistent) government living for
finitely many periods may find it optimal to imitate a “commitment type”. This commitment
type is an irrational type that plays a constant strategy at all histories. They show (following
the arguments in ???) that for long enough horizon, the unique sequential equilibrium of the
game would involve the government imitating the commitment type for the first periods, and
then playing mixed strategies, which imply a gradual reputation gain if she keeps imitating.

In an infinite horizon setting, ? show that a long lived agent facing a sequence short
lived agents can create a reputation for playing as the commitment type. By consistently
playing the commitment strategy, the long lived agent can eventually convince the short
lived agents that she will play as a committed type for the rest of the game. ? general-
ized this idea to the case of a government playing against a continuum of long-lived small
players, whose preferences depend only on aggregate state variables. The atomistic nature
of the small players allows them to use ? results to get bounds on equilibrium payoffs. ?
studies the problem of optimal linear capital taxation, in a model with impermanent types,
which can accommodate occasional losses of reputation. Rather than obtaining bounds, he
characterizes the optimal Markovian equilibrium of the game, as a function of the posterior
the public has about the government’s type.

A second strand of the literature on reputation focuses on a complete information bench-
mark with the goal of characterizing sustainable policies. These are policies that are the
outcome of a subgame perfect equilibrium of the policy game, starting with ?? and ???.
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In such environments, governments may have incentives to behave well under the threat of
punishment by switching to a bad equilibrium afterwards. See ?7 for a tractable unified
framework to study these issues.8

This paper studies reputation formation on both dimensions: in terms of payoff het-
erogeneity and in terms of equilibrium punishments. The main point of departure is that
instead of designing the optimal policy for a time inconsistent policy maker (that wants to
behave as if she was time consistent), I focus on the opposite case. I consider the problem
of a trustworthy policy maker (with no time inconsistency bias) who nevertheless may be
perceived as opportunistic by the agents. Therefore, its goal is essentially to separate it-
self from the time inconsistent, untrustworthy type, if possible. The most related papers
in spirit to mine are ?,? and particularly ?. ? study the optimal policy problem of a
benevolent government that has access to a “loose commitment” technology, under which
not all announcements can be guaranteed to be fulfilled. ? explores the optimal policy of
a committed government that worries she might be perceived as a government that can-
not credibly commit to her announced policies. This paper also focuses on characterizing
the optimal policy for the time consistent type (the committed type in her setting) instead
of just studying the optimal policy of a time inconsistent type imitating a consistent one.
? apply these ideas in the context of the standard New Keynesian model, similar to our
setup in subsection 2.2. Ultimately these papers study equilibrium in an environment where
all players involved know that the government is ex-ante either a type that can commit
or not (which holds for all subsequent periods). They then study a particular equilibrium
refinement that happens to select the best equilibrium for the able-to-commit type. They
also show that other equilibrium refinements such as the intuitive criterion (e.g., ?) select
a different equilibrium. In macroeconomics, the most related paper to mine that studies
robustness to specific refinements is ?. They study the robust predictions of any equilibria
in a global game setting with incomplete information.

The literature on robust mechanism design is fairly recent, starting with partial robust
implementation in ?, and robust implementation in ?. The latter focuses on finding con-
ditions on environments and social choice functions such that they are implemented under
implemented for all possible beliefs, if the only thing that the mechanism designer knows
about the agent’s beliefs is that they share common knowledge (or certainty) of rationality.
When the environment is dynamic, different concepts of rationalizability may be used, like
normal form Interim Correlated Rationalizability (as in ?) and Interim Sequential Ratio-
nalizability (??), among others. This paper focuses on the stronger assumption of common
7Chapter 16, pp 485-526
8This principle is also exploited in the relational contract literature (?,? ,?) where a principal announces
a payment scheme after income is realized (the state-contingent policy) but has no commitment to it other
than the one enforced by the threat of retaliation by the agent (not making effort, strike, quit, etc). Similar
themes are studied in the literature on risk sharing with limited commitment (?, ?, ? and ?) where a transfer
scheme conditional on the realization of income (the contingent policy) is enforced by threating agents who
deviate of excluding them from the social contract.
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strong certainty of rationality (???) which is also equivalent to ? notion of “Extensive-
form rationalizability”. In a similar vein, the paper most related in spirit to mine is ?. He
studies reputational bargaining in a continuous time setting in which agents announce bar-
gaining postures that they may become committed to with a given positive probability. He
characterizes the minimum payoff consistent with mutual knowledge of rationality between
players (i.e., one round of knowledge of rationality), and the bargaining posture that she
must announce in order to guarantee herself a payoff of at least this lower bound. A crucial
difference to my setting is the commitment technology, which ensures certain expected pay-
offs to the other party, regardless whether they think they are facing a rational opponent or
not. I characterize optimal robust policy in a repeated setting in which one can guarantee
themselves the best payoff that is consistent with (strong) common knowledge of rationality.

4. The Model

I now introduce the framework and model. Section 4.1 describes the stage game and
shows the multiplicity of equilibria. I then setup the repeated game in Section 4.2 and
develop the concept of system of beliefs in Section 4.3. Section 4.4 introduces weak and
strong rationalizability and Section 4.5 argues why we must turn to robustness relative to
equilibrium refinements.

4.1. Stage Game. There are two players: a policy maker d (she) and an agent p (he).
The agent represents the public. In the no-commitment benchmark, p is asked to trust a
state-contingent decision to d, who after a state of nature z ∈ Z is realized, has to choose
a policy that affects both parties payoffs. For simplicity, I will assume that d has only two
options: a “normal” policy that is optimal most of the time and an “emergency” policy that
needs to be taken in certain instances. As a mnemonic device, we will write g for the normal
policy (pushing a “green button”) and r for the emergency policy (pushing a “red button”).
The extensive form game is described in Figure 1.
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Figure 1. Stage game with time inconsistent type

The random shock z = (Up, Uold) is the profile of relative utilities of the emergency action
r with respect to g, for both the public p and the decision maker d. I assume this random
shock to be an absolutely continuous random variable over Z :=

[
U,U

]2
⊂ R2, with density

function f (z). The subscript “old” serves to remind the reader that these are the preferences
of the policy maker before a reform is undertaken, which will be described below.

To make this concrete, consider the capital taxation example described in Section 2.1.
The government decides whether to expropriate capital to finance public good provision
(the emergency policy with r = q) or to keep taxes at zero (the normal policy with r = 0).
The government gets to make this decision only when capitalist households decide to invest
qi = q which corresponds to the public placing trust in the government as without any
investment the government cannot finance public good provision in the first place. As such,
T corresponds to “invest q”. The shock z can be written as

(4.1) z = (Up, Uold) := q (zk − 1, zb − 1)

Returning to the general model, I will additionally assume that

(4.2) Ez [max (0, Up)] > up >

ˆ
Uold>0

Upf (z) dz
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This implies that if p was guaranteed his most desirable policy, he would place trust in d.9

I will further assume that

(4.3) up, uold < 0

so that both parties would benefit from ensuring that the decision maker plays the normal
action g for all shocks (and hence losing all flexibility), if such a policy was enforceable.
In the capital taxation problem, this would correspond to a ban on positive taxes while in
our inflation example this would correspond to a commitment to zero inflation.10 Although
this would induce the public trust, this would come at the cost of losing all flexibility to
optimally react to shocks.

As I discussed in the introduction, I will explore two (potentially complementary) ways
to solve this time inconsistency problem: by credibly loosing some flexibility to react to the
economic shock, or by reforming the incentives of the decision maker, in order to alleviate
the time inconsistency problem.

First, I introduce a commitment cost technology, under which the decision maker can
choose, before the game starts, a cost c ≥ 0 of taking the emergency action r. This can be
interpreted as a partial commitment to the normal policy g, that includes an escape clause
to break the commitment, forcing the decision maker to suffer a cost of c ≥ 0 utils (as in ?).
Although d cannot commit to a complete contingent rule, I assume that the commitment cost
chosen is binding. In the capital taxation model, this corresponds to the cost of increasing
taxes chosen by the time inconsistent government, while in the inflation setting model this
would intuitively translate to the inflation cap π, in that it is a partial commitment chosen
by the monetary authority. The modified stage game is illustrated in Figure 2.

9In the context of the capital taxation problem, by setting up = − (1− I)E (zk | zb ≥ 1) (q − 1), the left
hand side inequality of 4.2 corresponds to the solution to 2.3 in the capital taxation problem, together with
assumption 2.4. Notice also that up < 0
10Although this seems to be to an extreme policy to be seen in practice, hyperinflation stabilization programs
usually involve drastic measures, that resemble losing all flexibility to stabilize output. For example, Zim-
babwe in 2009 decided to abandon its currency (and hence most of its monetary policy) within the context
of a severe hyperinflation (which reached a peak of 79,600,000% per month in November of 2008).
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Figure 2. Stage game with commitment cost choice

I will allow c = ∞, the case where d decides to shut down the emergency action r, as I
previously discussed, so that the commitment cost set is C = [0,maxz∈Z max (|zp| , |zold|)]∪
{∞} . In this game, the decision maker would then choose the commitment cost c = c that
makes p indifferent between trusting and not trusting:

(4.4) c := min
{
c ≥ 0 :

ˆ
Uold>c

Upf (z) dz ≥ up

}
<∞

While this technology is available, I will consider the case in which the policy maker makes
a reform, by effectively changing the ex-post incentives that the decision maker faces, by
either delegating the decision to a different agent (like the conservative central banker of ?)
or by designing a contract for the decision maker (as in ? and ?). I model this reform by
creating a new policy maker type, θ = new, with ex-post payoffs given by

(4.5) Unew (z) = Up

i.e. the reformed decision maker has the same ex-post incentives as the public. Condition
4.2 implies that if p knew he was facing this type of decision maker, he would trust her even
with c = 0, so that no commitment cost would be necessary. This corresponds to the “pro-
capitalist” government in the capital taxation model, which removes the time inconsistency
of government policy.

The key problem I will study in this paper is the government’s lack of credibility. Even
though an incentive reform has been carried out, the public may remain unconvinced that
the reform has been effective. For instance, investors might still believe that the government
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is not pro-capitalist enough, and will expropriate them too often, or that the new appointed
central banker may not be a conservative type. I model this situation by introducing payoff
uncertainty from the public side: p believes he is facing a reformed, time consistent decision
maker θ = new with probability π ∈ (0, 1) and otherwise faces the old, time inconsistent
type θ = old. This results on an incomplete information game, described in Figure 3.

Figure 3. Incomplete information game

This model follows an executive approach to optimal policy, where it is the decision maker
herself who decides the commitment cost and the policy rule. This contrasts with the
legislative approach studied in ? and ? who instead solve for the optimal mechanism design
problem from the point of view of p. In Section (7) I briefly explore this route and find that
in our setting, it will be detrimental to welfare, conditional on the government being of type
θ = new.

Because the commitment cost choice is taken after the type has been realized, this is
effectively a signaling game. The choice of commitment cost could in principle help p to
infer d’s type. As a prelude to what follows it is useful to characterize the set of Perfect
Bayesian Equilibria (PBE) of this game.

Let c (π) be the minimum cost that induces p to trust d in any pooling equilibrium:

(4.6) c (π) := min
{
c ≥ 0 : π

ˆ
Up>c

Upf (z) dz + (1− π)
ˆ
Uold>c

Upf (z) dz ≥ up

}
.
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It is easy to see that c (π) is decreasing in π and that c (π) < c (0) = c according to 4.4.
Proposition 4.1 characterizes the set of all PBE of the stage game.

Proposition 4.1. All PBE of the static game are pooling equilibria. For any ĉ ∈ [c (π) , c]
there exists a PBE in which both types choose ĉ as the commitment cost.

Proof. Any equilibrium must induce p to trust since d can always choose c > U (so it will
never be optimal to take the emergency action) and get a payoff of 0 > ud. There cannot be
any pooling equilibrium with c < c (π), since the definition of c (π) implies it would give p
less than his reservation utility up. It cannot happen either if c > c, since either type would
deviate and choose c and induce p to trust, regardless of his updated beliefs πp (c). This
follows from

πp (c)
ˆ
UP>c

Upf (z) dz + [1− πp (c)]
ˆ
Uold>c

Upf (z) dz >
(1)

(4.7) πp (c)E [max (Up − c, 0)] + [1− πp (c)]up >
(2)
πp (c)up + [1− πp (c)]up = up

where (1) follows from definition 4.4 and (2) from the fact that 0 > up. I will now show that
for any ĉ ∈ [c (π) , c] there exist a pooling equilibrium in which both θ = new and θ = old

find it optimal to choose c = ĉ. Conjecture the following belief updating rule:

(4.8) πĉp (c) :=

0 if c < ĉ

π if c ≥ ĉ.

Under a pooling equilibrium, since ĉ ≥ c (π), p will trust d. Neither type will deviate from
ĉ since the optimal deviation that would make p trust would be to choose ĉ = c. The
non-existence of other PBE is left to the appendix. �

Suppose now that, in light of the results of Proposition 4.1, the reformed decision maker
θ = new is considering what commitment cost to choose. If we are thinking about a policy
prescription that is supported by some PBE of this game, the multiplicity of equilibria in
Proposition 4.1 requires some equilibrium refinement. If the policy prescription was the
commitment cost supported by the best equilibrium of the game, Proposition 4.1 shows that
c = c (π) is selected for either θ = new or θ = old. We will argue that this will not be a
particularly “robust” policy in the sense that expecting p to trust after observing c = c (π)
relies on strong and sensitive assumptions about p ’s beliefs, which may be imperfectly
known by the decision maker.

First, observe that the best PBE policy is very sensitive to the prior. If p′s true prior
were π̃ = π − ε for some ε > 0, then p would not trust after observing c = c (π). Second,
even if π were commonly known, after the commitment cost has been chosen, p updates
beliefs to πp (c) ∈ (0, 1). As illustrated by the proof of Propostion 4.1 (in particular the
belief updating rule in 4.8), the indeterminacy of beliefs following zero probability events
generates a large set of potential beliefs that can arise in equilibrium. As such, p’s behavior
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will depend on the complete specification of her updates beliefs for all off-equilibrium costs,
not just the candidate equilibrium one. Therefore, small changes in the updating rule (for
example, by changing ĉ in 4.8) generates potentially very different behavior for p.11

Our main question becomes whether we can choose a policy that is robust to mis-
specifications of both the prior π and the updating rule πp (c). It is clear that by choosing
c = ∞ and effectively removing all flexibility, a rational p would trust d independently of
his beliefs. However, we can do better. Inequality 4.7 implies that if c = c and p will find
it optimal to trust irrespective of the updating rule πp (c) if he still believes he is facing a
rational decision maker. I will show that in fact c = c is the only robust policy, when the
only assumption we make about p′s beliefs is that they are consistent with strong common
certainty of rationality; i.e. p believes he is facing a rational d if her observed past behavior
is consistent with common knowledge of rationality.

Since the difference between the reformed and the time inconsistent type is about their
ex-post incentives, Proposition 4.1 gives a negative result: types cannot separate in any
equilibrium of the stage game, by their choice of c. Only by having repeated interactions
can the reformed decision maker hope to convince p of the success of the reform, trying to
signal her type through her reactions to the realized shocks. Throughout the remainder of
the paper I will investigate whether robust policies, such as the one I found in the static
game, can eventually convince p that θ = new, regardless of his particular belief updating
rule.

4.2. Repeated game: Setup and basic notation. I extend the stage game to an infinite
horizon setting: τ ∈ {0, 1, ....}. I assume that d is infinitely lived and that types are perma-
nent; i.e. at τ = 0 nature chooses θ = new with probability πnew. d has discounted expected
utility with discount factor βθ ∈ (0, 1). For notational ease, I will assume βold = βnew = β. I
will specify when the results are sensitive to this assumption. Shocks are iid across periods:
zτ := (Up,τ , Uold,τ ) ∼i.i.d f (zτ ). I assume that there is a sequence of myopic short run play-
ers pτ (or equivalently βp = 0) which is a standard assumption in the reputation literature
(?, ?). This will be without loss of generality for most applications to macroeconomic mod-
els applications.12 At every period, d chooses cτ ≥ 0 which is binding only for that period.
The policy maker can change its choice freely in every period. I also assume that all past
history of actions and shocks (except for d′s payoff type) is observed by all players at every

11More generally, we apply ? results to the interim normal form of this game, finding tight sufficient conditions
for any particular Bayesian equilibria (not necessarily perfect) to be the expected solution outcome: (a)
There is common knowledge of rationality, (b) the strategies of both θ = new and θ = old prescribed by the
Bayesian equilibrium are common knowledge, and (c) the inference rule πp (.) is also common knowledge
12? show that this assumption is without loss of generality when p is modeled as representative agent for a
continuum of atomistic and anonymous patient agents. In particular, the capital taxation model of section
2.1 satisfies these assumptions when capitalist households have a common discount rate δk ∈ (0, 1).



CREDIBLE REFORMS: A ROBUST IMPLEMENTATION APPROACH 18

node in the game tree. I will further assume that the structure of the game described so far
is common knowledge for both players and that agents know their own payoff parameters.13

A stage τ outcome is a 4-tuple hτ = (cτ , aτ , zτ , rτ ) where cτ is the commitment cost,
aτ ∈ {0, 1} is the trust decision, and rτ ∈ {0, 1} is the contingent policy, where rτ = 1 if d
chooses the emergency action, and rτ = 0 otherwise. A history up to time τ is defined as

hτ := (h0, h1, ..., hτ−1) .

I will refer to a “partial history” as a history plus part of the stage game. For example,
p moves at histories (hτ , cτ ), after the commitment cost is chosen. The set of all partial
histories will be denoted as H, and Hi ⊆ H is the set of histories in which agent i ∈ {p, d}
has to take an action.

A strategy for the policy maker is a function σd : Hd → C × {0, 1}Z that specifies, at the
start of every period τ , a commitment cost cτ and the contingent choice provided p trusts.
Then, we can always write a strategy as a pair:

(4.9) σd (hτ ) = (cσd (hτ ) , rσd (hτ , ·) : C × Z → {0, 1})

where the choice is a commitment cost cσd (hτ ) ∈ C and a policy rule function rσd(hτ , cτ , zτ )
of the shock, given commitment cost cτ The superscript σd serves to remind the reader
these objects are part of a single strategy σd. Likewise, a strategy σp for p is a function
σp : Hp → {0, 1} that assigns to every observed history, his trust decision

σp (hτ , cτ ) = aσp (hτ , cτ ) =

1 if p trusts

0 if p does not trust.

Write the set of strategies of each agent as Σi for i ∈ {d, p} Also let Σ = Σd×Σp be the set of
strategy profiles σ = (σd, σp). If player i ∈ {d, p} plays strategy σi, the set of histories that
will be consistent with σi is denoted H (σi) ⊂ H. For a history h ∈ H we say a strategy σi
is consistent with h if h ∈ H (σi). Let Σi (h) = {σi ∈ Σi : h ∈ H (σi)} be the set of strategies
consistent with h.

Given a strategy profile σ = (σp, σd) let Wθ (σ | h) be the expected continuation utility
for d′s type θ ∈ {old, new} given history h

(4.10) Wθ (σ | h) := (1− β)E
{ ∞∑
s=τ

βs−τ
[
asrs (Uθ,s − cs) + (1− as)up

]
| h
}

where cs = cσd (hs), as = aσp (hs, cs) and rs = rσd (hs, cs, zs). Likewise, denote V (σ | h) for
the spot utility for agent p at history h

(4.11) V (σ | h) := aτEz (rτUp,τ ) + (1− aτ )up.

4.3. Systems of Beliefs. Agents form beliefs both about the payoff types of the other
player, as well as the strategies that they may be planning to play. In static games, such
13These are the basic assumptions in ?.
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beliefs are characterized by some distribution π ∈ ∆ (Θ−i × S−i) where Θ−i is the set of
types of the other agent and S−i their strategy set. In our particular game, Θd = {new, old}
and Θp = {p}. In dynamic settings however, agents may revise their beliefs after observing
the history of play. This revision is described by a conditional probability system, that
respects Bayes rule whenever possible. Formally, let Xi the Borel σ−algebra generated by the
product topology14 on Θ−i × Σ−i and Ii =

{
E ∈ Xi : projΣ−iE = Σ−i (h) for some h ∈ H

}
be the class of infomation sets for i. A system of beliefs πi on Θ−i × Σ−i is a mapping
πi : Ii → ∆ (Θ−i × Σ−i) such that:

(1) Given an information set E ∈ Ei, πi (. | E) is a probability measure over Θ−i×Σ−i.15

(2) If A ⊆ B ⊆ C with B,C ∈ Ii, then πi (A | B)πi (B | C) = πi (A | C).

I write πi (E | h) = πi (E | Σi (h)) for E ⊂ Θ−i×Σ−i for the probability assessment of event
E conditional on history h. Denote ∆H (Θ−i × Σ−i) to be the set of all systems of beliefs.
Given πd ∈ ∆H (Θp × Σp) = ∆H (Σp) and strategy σd ∈ Σd, define W πd

θ (σd | h) as the
expected continuation payoff for type θ ∈ {old, new} conditional on history h, under beliefs
πd:

(4.12) W πd
θ (σd | h) :=

ˆ
Wθ (σd, σ̂p | h) dπd (σ̂p | h)

Analogously, given a system of beliefs πp the expected utility of strategy σp conditional on
history h is

(4.13) V πp (σp | h) :=
ˆ
V (σ̂d, σp | h) dπp (σ̂d | h)

For a given system of beliefs πi we write σi ∈ SBRθi (πi) as the set of sequential best
responses of type θi to beliefs πi.16

4.4. Weak and Strong Rationalizability. In this subsection I introduce the notions of
weak and strong rationalizability. Our goal is to find strategies that are robust to changes
in p’s beliefs so that p is induced to trust as long as there is common certainty of rationality,
which means that all agents are rational, all agents are certain that all agents are rational
and so on, ad infinitum. In static settings, beliefs that satisfy these common knowledge
assumptions have their support over the set of rationalizable strategies. This set is char-
acterized by an iterative deletion process described in ?. The set of strategies is refined
by eliminating those which are not a best response to some beliefs about the other agents
strategies, which are themselves best responses to some other beliefs, and so on.

14A sequence {σi,n}n∈N converges to σi in the product topology in Σi if and only if σi,n (h)→ σi (h) for all
h ∈ Hi
15We endow Θ−i × Σ−i with the Borel σ−algebra with respect to the product topology.
16A strategy σp is a sequential best response to πp for all (hτ , cτ ) ∈ Hp and all other strategies σ̂p ∈ Σp, we
have V πp (σp | hτ , cτ ) ≥ V πd (σ̂p | hτ , cτ ). Likewise, σd is a sequential best response to belief system πd for
type θ ∈ {new, bad} if for all histories h ∈ Hd and all strategies σ̂d ∈ Σd we haveWπd

θ (σd | h) ≥Wπd
θ (σ̂d | h).
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However, the possibility of reaching zero probability events also creates different ways
to extend the concept of rationalizability, which hinge upon on our notion of “certainty or
rationality”. An agent is certain about some event E if she believes that this event happens
with probability 1.17 We say that a history h ∈ H is consistent with event E ⊆ Θ−i × Σ−i
if there exist a strategy σ−i ∈ projΣ−iE such that h ∈ H (σ−i). Abusing the notation
somewhat I will write h ∈ H (E) for such histories.

Definition 4.1 (Weak Certainty of event E). A system of beliefs πi ∈ ∆H (Θ−i × Σ−i) is
weakly certain of event E ⊂ Θ−i × Σ−i if πi

(
E | h0) = 1

Definition 4.2 (Strong Certainty in event E). A system of beliefs πi ∈ ∆H (Θ−i × Σ−i) is
strongly certain of event E ⊆ Θ−i × Σ−i if πi (E | h) = 1 for all h ∈ H (E)

To illustrate the difference between both concepts, suppose p has a belief system πp, that is
certain of some event E, and is also certain about a smaller event F = {(new, σnew) , (old, σold)}
⊂ E. That is, he is certain about what strategy each type of player d chooses (which is
the required assumption in the construction of a Bayesian equilibrium in pure strategies).
However, πp may be an incorrect prediction of d’s behavior. Take a history h in which p

realizes that the observed history is not consistent with the strategies in F but it is never-
theless consistent with event E: i.e. {σnew, σold} ∩Σd (h) = ∅ but h ∈ H (E). If πp is weakly
certain of event E, then after the unexpected move by d, no restrictions are imposed on
the updated beliefs from history h on. In particular, he is not required to remain certain
about event E, even if the observed history is consistent with it. On the other hand, if πp is
strongly certain about event E, he would realize his beliefs about event F were wrong, but
his updated beliefs would remain certain about event E. In a way, the concept of strong
certainty is similar to an agent that knows that event E is true, and her updated beliefs
should respect it as a “working hypothesis” (?)

These two different notions of certainty will give rise to two different notions of rational-
izability. Define the set of sequentially rational outcomes Ri ⊂ Θi × Σi as

(4.14) Ri =
{

(θi, σi) : σi ∈ SBRθi (πi) for some πi ∈ ∆H (Θ−i × Σ−i)
}
.

The set Ri gives all the strategies and payoff types such that σi is the sequential best response
to some system of beliefs.

I will now formally follow the iterative procedure of ?. For a given set E ⊂ Θ−i × Σ−i
write Wi (E) ⊂ ∆H (Θ−i × Σ−i) to be the set of of beliefs πi that are weakly certain of E.
Analogously, define Si (E) ⊂Wi (E) for the set of beliefs that are strongly certain of it. I

17When the event E is also true we say that the type knows E. This admits the possibility that an agent
believes with probability one an event that is indeed false. In static games, because the game ends right
after the payoffs are realized, there is no substantive difference between certainty and knowledge. In dynamic
games the situation is more subtle, since an agent’s beliefs may be proven wrong (or refuted) by the observed
path of play. Because of this feature, the literature has focused on the concept of certainty (?, ?, ??) instead
of knowledge, for dynamic games.
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will denote WCRki ⊂ Θi × Σi and SCRki ⊂ WCRki as the sets of type-strategy pairs for
agent i that are consistent with k rounds of mutual weak (strong) certainty of rationality.
For k = 0, define

WCR0
i = SCR0

i = Ri.

For k > 1, define iteratively:

(4.15) WCRki :=

(θi, σi) :

(1) : (θi, σi) ∈WCRk−1
i

(2) : ∃πi ∈Wi

(
WCRk−1

−i

)
: σi ∈ SBRθi (πi)



(4.16) SCRki :=

(θi, σi) :

(1) : (θi, σi) ∈ SCRk−1
i

(2) : ∃πi ∈ Si
(
SCRk−1

−i

)
: σi ∈ SBRθi (πi)

 .
We start with beliefs that are weakly (strongly) certain of event E = R−i and then we
proceed with an iterative deletion procedure, in which the set agent i is weakly (strongly)
certain about is the set E = WCRk−1

i and similarly for strong certainty. Finally, the sets
of weak and strong rationalizable outcomes is defined as

(4.17) WCR∞i =
⋂
k∈N

WCRki

(4.18) SCR∞i =
⋂
k∈N

SCRki

The sets WCR∞i ,SCR
∞
i ⊂ Σi are the sets of strategies for i that are consistent with him

having weak (strong) common certainty of rationality. I will denote BWR
i and BSRi as the

sets of weak and strong rationalizable beliefs for p, respectively

(4.19) BWR
i := ∆H

(
WCR∞−i

)
and BSRi := ∆H

(
SCR∞−i

)
.

I will say that a strategy-belief pair (σi, πi) is θi−strong rationalizable (or simply p−strong
rationalizable for the case i = p) whenever πi ∈ BSRi and σi ∈ SBRθi (πi). A history h

is θi−strong rationalizable whenever h ∈ H (σi) for some weak rationalizable pair (σi, πi).
I will refer to such pairs as a θi−strong rationalizations of h. I also define the analogous
notions for weak rationalizability.

4.5. Discussion. In the above we have characterized the multiplicity of equilibria in the
static game and have established the setup of the repeated game including belief systems
and notions of rationalizability. The next section will turn to robust implementation. We
briefly connect the concepts now, and argue that equilibrium refinements are not robust to
a variety of perturbations we might think of.

First, and most importantly for our applications is the one considered in this paper which
is robustness to strategic uncertainty. Recall that the static game had multiple equilibria.
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The dynamic game only exacerbates this problem via classical folk theorem like arguments.18

This suggests that in order for either to form predictions or to make policy recommendations,
some equilibrium refinement is needed, as selecting optimal or efficient equilibria. In some
contexts this may be reasonable: e.g. if agents could meet and agree upon a desired outcome
before the game started and are able to decide both the expected behavior by all agents,
the punishments that should be sanctioned to deviators, subject to the constraint that
these should be self-enforceable. However, in this environment the public has no reason to
agree with the time inconsistent type and, as such, selecting the optimal equilibrium seems
suspect. A second limitation of equilibrium refinements is that they are very sensitive to
common knowledge assumptions about the payoff structure of the game. If we allow the set
of feasible payoff structures to satisfy a richness condition, 19and we pick a Nash equilibrium
of the game and the belief systems that support it, then arbitrarily small perturbations
on the beliefs may pick any other weak rationalizable outcome as the unique equilibrium
of the perturbed game (e.g., ???). Under these assumptions, the only concept that is
robust to small perturbations of beliefs is weak rationalizability, and hence only predictions
that hold for all weak rationalizable strategy profiles are robust to these perturbations.
20However, the richness assumption may be too a stringent condition for our robustness
exercise, since we are ultimately interested in modeling robustness to strategic uncertainty.
Strong rationalizability, being a stronger solution concept may not be robust to all of these
perturbations in payoff structures, but we briefly study some in Section 7 how to create
policies that are robust to richer payoff type spaces.

One of the main implications of strong rationalizability is that agents can be convinced
at some histories that certain payoff types are not consistent with the history observed.
Suppose that p reaches a history that is not consistent with both strong common certainty
of rationality and θ = old, but it is consistent with θ = new. Strong common certainty
of rationality implies that at these histories p must be certain that θ = new for all strong
rationalizable continuation histories; it becomes common knowledge that θ = new, and the
game transforms in practice to a game of complete information.21 When this happens, we
will say that θ = new has achieved full or strong separation from θ = old. This is one of

18See ? for an exhaustive review on these topics.
19Formally, for every strategy σi there exist a type θ̂i (σi) ∈ Θ̂i such that σi is conditionally dominant for
type θ̂i (σi) at every history consistent with it: i.e. Wθi (σi, σ−i | h) > Wθi (σ̂i, σ−i | h) for all σ̂i ∈ Σi, σ−i ∈
Σ−i, h ∈ Hi (σi).
20? show that when we relax the restriction that all players know their own type at the beginning of the
game (and never abandon this belief), then the only robust solution concept is normal form interim correlated
rationalizability (ICR), extending their previous result on static games (?).
21If at some continuation history p observes behavior that is inconsistent with θ = new playing a strongly
rationalizable strategy, p abandons the assumption of strong common certainty of rationality, which then
allows him to believe that θ = old after all. When this happens, we apply the “best-rationalization principle”
as in ?. It states that whenever p arrives at such a history, she will believe that there are at least k−rounds
of strong common certainty of rationality, with k the highest integer for which the history is consistent with
k rounds of strong rationalizability.
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the key ingredients of robust reputation formation: the reformed decision maker can gain
reputation by taking actions that θ = old decision maker would never take, or that at least
would be very costly for her.

5. Robust Implementation

This section introduces the notion of robust implementation to a given set of restrictions
on p’s beliefs (subsection 5.1) and solves for the robust implementing policies for two impor-
tant benchmarks: weak and strong rationalizable beliefs. Focusing on strong rationalizable
implementation, I characterize the optimal strong rationalizable implementation by solving
a recursive dynamic contracting problem with a single promise-keeping constraint. More-
over, for histories where robust separation has not occurred, the relevant reputation measure
for d is the implied spot opportunity cost or sacrifice for θ = old of playing rτ−1, so only
the immediate previous period matters in terms of building partial reputation. I show that
on the outcome path of the optimal robust policy, θ = new gets both partial gains and
(endogenous) losses of reputation until robust separation is achieved. After this, the game
essentially becomes one with complete information.

5.1. Definition. The decision maker has some information about p′s beliefs or may be
willing to make some assumptions about them. She considers that p′s possible beliefs lie in
some subset Bp ⊂ ∆H (Θd × Σd). Write SBRp (Bp) =

⋃
πp∈Bp SBRp (πp) ⊂ Σp as the set

of all sequential best responses to beliefs in Bp. We will say that a strategy σd is a robust
implementation of trust in Bp when it induces p to trust d at all τ = 0, 1, 2, ..., provided d
knows that (1) p′s beliefs are in Bp and (2) p is sequentially rational.

Definition 5.1 (Robust Implementation). A strategy σd ∈ Σd robustly implements trust in
Bp if, for all histories (hτ , cτ ) ∈ Hp (σd) we have

aσp (hτ , cτ ) = 1 for all σp ∈ SBRp (Bp)

Under the assumptions on the stage game, for a given belief system πp , its sequential best
response will be generically unique. Therefore, if d knows both that p is rational and that
he has beliefs πp, then she can predict the strategy that p will choose.

5.2. Weak Rationalizable Implementation. I begin with the most lax notion of ratio-
nalizability at our disposal – weak rationalizability; i.e. Bp = BWR

p . Here I show that this
notion of rationalizability delivers a rather stark and, in some sense, negative result: only by
eliminating the emergency action entirely can d robustly implement trust. Since the public
cares only about the decision maker’s strategy, the multiplicity of commitment costs that are
consistent with common certainty of rationality allows for the following weak rationalizable
beliefs: believe d is rational only if she takes one of these specified decisions but is actually
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thought to be irrational if she takes any other. Then it becomes impossible to implement
trust in both belief types, unless d gets rid of the emergency action altogether.22

Proposition 5.1. The unique robust implementing policy in Bp = BWR
p involves cτ = ∞

(i.e.prohibiting the emergency action) every period.

Thus, the result is that weak rationalizability is too weak a concept to be used for our
purposes. After an unexpected commitment cost choice, p could believe d to be irrational
and never trust d again unless r is removed. This sort of reasoning does not take into
account a restriction that, say, if p could find some other beliefs under which d would be
rational, then this now becomes p’s working hypothesis. This is precisely the notion of strong
rationalizability, which I explore below.

5.3. Strong Rationalizable Implementation. The next three subsections present the
main results of the paper in which I characterize the optimal strong rationalizable imple-
mentation. I will show that an optimal robust implementing strategy corresponds to the
sequential best response to some strong rationalizable system of beliefs. In that sense, an
optimal robust implementing strategy will be equivalent to finding the most pessimistic be-
liefs that d could have about p’s behavior, that is consistent with common strong certainty
of rationality. Most importantly, I will also show that any optimal robust strategy will be
in fact the min-max strategy for d, delivering the best possible utility that d can guarantee
at any continuation history, regardless of her system of beliefs.

To simplify notation, denote ΣSR
i = projΣiSCR

∞
i for the set of extensive form ratio-

nalizable strategies for agent i. Abusing the notation somewhat I will also write ΣSR
θ =

projΣd
{(
θ̂, σ̂d

)
∈ SCR∞d : θ̂ = θ

}
to represent the set of extensive form rationalizable strate-

gies for type. The goal is to characterize optimal robust strategies: i.e. robust strategies
that maximize the expected (ex-ante) utility for d, at τ = 0. As a warm up, I solve for the
optimal robust strategy in the stage game.

Example 5.1 (Optimal Robust Strategy in the static game). Take the stage game
of Section 4.1. Then, there exist only two robust commitment cost choices: c = c and
c = ∞, which implies that the optimal robust implementation of trust is c = c, for either
θ ∈ {new, old}. This follows from the argument in the proof of Proposition 4.1: Irrespective
of the system of beliefs πp (c), if p is certain that he is facing a rational d, he will find it
optimal to trust. For c < c there always exist strong rationalizable beliefs that induces p not
to trust (see the construction of belief system in 4.8), and for c > c, p cannot expect to be
facing a rational decision maker, since it would have been a dominant strategy just to play
c = c, that induces p to trust and gives d a strictly higher payoff, regardless of her type.

22This argument extends to any game of private values with multiple weak rationalizable outcomes. A
Bayesian game is of if utility for each agent depends only on their own payoff parameter, and not about the
other agents payoffs. Formally, is of private values if for all mathnormaθ ∈ Θ ≡ ×Ii=1Θi
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In the repeated game setting, in order to guarantee p′s trust we need to make the utility
of trust to be greater than the outside option value up for all strong rationalizable beliefs.
Since p is myopic and does not care directly about the commitment cost payed, the only
relevant object to determine his expected payoff is the way he expects d to react to shocks
at time τ . Define then the set of all strong rationalizable policy functions

(5.1) R (hτ , cτ ) =
{
r (·) = rσd (hτ , cτ , ·) for some σd ∈ ΣSR

d (hτ , cτ )
}

Define also Rθ (hτ , cτ ) ⊂ R (hτ , cτ ) as those policy functions that are θ−rationalizable. Is
easy to show that aσp (hτ , cτ ) for all strong rationalizable strategies if and only if 23

ˆ
r (zτ )Up (zτ ) f (zτ ) dzτ ≥ up for all r (·) ∈ R (hτ , cτ )

which can be rewriten in a single condition as:

(5.2) V (hτ , cτ ) := min
r(·)∈R(hτ ,cτ )

ˆ
r (zτ )Up (zτ ) f (zτ ) dzτ ≥ up

i.e. the worst rationalizable payoff for p must be higher than the reservation utility. In
Appendix B.2 we show that R (hτ , cτ ) and Rθ (hτ , cτ ) are compact sets and the objective
function in the minimization problem of 5.2 is continuous in the product topology, which
makes V (hτ , cτ ) a well defined object.

Then, the optimal robust strategy σ∗new = {c∗ (·) , r∗ (·)} for type θ = new is the strategy
that solves the following programming problem:

(5.3) W ∗new = max
{c∗(·),r∗(·)}

E
{

(1− β)
∞∑
τ=0

βτ [Up (zτ )− c∗ (hτ )] r∗ (hτ , c∗ (hτ ) , zτ )
}

subject to

(5.4) V (hτ , c∗ (hτ )) ≥ up for all hτ ∈ H (σ∗θ)

and analogously forW ∗old. The goal for the rest of the paper is to characterize the solution to
5.3. optimal robust strategy for the reformed payoff type θ = new. Note that restriction 5.4
fully incorporates the robustness restriction into our programming problem. Theorem B.3
shows that ΣSR

θ is a compact set, and so are the subsets ΣSR
θ (h) ⊂ ΣSR

θ of history consistent
strategies, for all θ. This implies that existence of payoff functions W θ,W θ : Hd → R such
that, for all h ∈ Hd and θ ∈ {new, old}

(5.5) W θ (h) ≤W πd
θ (σd | h) ≤W θ (h) for all πd ∈ BSRθ , σd ∈ SBRθ (πd).

I will refer to W θ (·) and W θ (·) as the best and worst strong rationalizable payoffs for
type θ. I will also write Wθ := W θ

(
h0) and Wθ = W θ

(
h0) for the ex-ante worst (and

23Because of Fubini’s theorem, we can write Eπp [rσd (hτ , z)Up | hτ , cτ ] = Ez
{
Eπd
σ̃d

[
rσ̃d (hτ , zτ ) | hτ , cτ

]
Up
}

which corresponds to the expected value over a mixed strategy σ̂d with expected policy E
[
rσ̂d (hτ , cτ )

]
=

Eσ̃d

[
rσ̃d (hτ , zτ ) | hτ , cτ

]
. Then, the minimum rationalizable payoff of trusting is the one that assigns prob-

ability 1 to the worst rationalizable policy function r (·) from the viewpoint of p, on that history
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best) rationalizable payoff, from τ = 0 perspective. The first result relates these bounds
to robust implementation. Any optimal robust policy is extensive form rationalizable (i.e.
it corresponds to the best response of some rationalizable beliefs) and delivers the worst
rationalizable payoff W θ (h) at all histories and types θ ∈ {new, old}.

Lemma 5.1. Let σ∗θ be the optimal robust strategy for type θ. Then σ∗θ ∈ ΣSR
θ , with ratio-

nalizing belief πθ ∈ BSRθ . Moreover, for all histories h ∈ Hd

Wθ (σ∗d | h) = W θ (h) ,

i.e., the optimal robust policy delivers the worst strong rationalizable payoff at all histories.

Lemma 5.1 implies a very important corollary. The optimal robust strategy is the min-
max strategies for type θ ∈ {old, new} (as in ?) across all beliefs that are consistent with
common strong certainty of rationality. The beliefs πθ corresponds to the min-max beliefs
for type θ, the most pessimistic beliefs that type θ can have about the strategy that p may be
playing. Therefore, at history hτ , the optimal robust policy gives the best payoff that type θ
can guarantee herself, regardless of her beliefs, as long as p plays some strong rationalizable
strategy. This further implies that the value of program 5.3 at any history satisfies

(5.6) W ∗θ = Wθ

Note here that the worst rationalizable payoff does not coincide with the payoff of the worst
Bayesian equilibrium of the extensive form game. Common strong certainty of rationality,
strictly speaking, is neither a stronger nor weaker solution concept than Bayesian equilib-
rium.24.

5.4. Observed Sacrifice and Strong Rationalizable Policies. The program 5.3 may
seem complicated, because of the potentially complex history dependence of the set of strong
rationalizable policies Rθ (hτ , cτ ). Since R (hτ , cτ ) = Rnew (hτ , cτ ) ∪ Rold (hτ , cτ ), charac-
terizing these sets will determine the shape of V (hτ , cτ ). I will derive the restrictions that
strong rationalizability, together with the observed history, impose on the set of policy func-
tions r (·) that p may expect, and show that we only need to know the previous period
implied opportunity cost payed by type θ, to be able to characterize the set Rθ (hτ , cτ ) .
In this sense, the set of strong rationalizable policies Rθ (hτ , cτ ) is Markovian, with a state
variable that is observable by all agents in the game.

Consider a history (hτ , cτ ) ∈ Hp observed by agent p. Suppose first that p hypothesizes
that d is of payoff type θ, and that history hτ is such that rτ−1 = 0 and Uθ,τ−1 − cτ−1 > 0,

24Applying ? to the interim normal form game, for a particular Bayesian equilibria to be the predicted
outcome of the game, we need the common prior assumption (i.e. both players know π = Pr (θ = new))
together with weak common knowledge of rationality and beliefs (i.e. weak common certainty, plus the
requirement that the beliefs are correct). While the common certainty of rationality is weaker than strong
certainty, this characterization implies a much stronger condition. Agents have common knowledge about
the strategies that each other will play and these beliefs must be correct.
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so that d played the normal action in the previous period, but she would have preferred to
play the emergency action, if she was of type θ. Let hτ (r = 1) be the continuation history
had d chosen rτ−1 = 1 instead. Then, a θ−rationalizable pair (σd, πd) is consistent with the
observed hτ if and only if

(5.7) βW πd
θ (σd | hτ ) ≥ (1− β) (Uθ,τ−1 − cτ−1) + βW πd

θ (σd | hτ (r = 1)) .

To interpret condition 5.11, define first Sθ,τ−1 := Uθ,τ−1 − cτ−1 > 0 as the sacrificed spot
utility for type θ of playing rτ−1 = 0 instead of rτ−1 = 1. Also, let

(5.8) NPVπd
θ (σd | hτ ) := β

1− β
[
W πd
θ (σd | hτ )−W πd

θ (σd | hτ (r = 1))
]

denote the net present continuation value under pair (σd, πd) of having played rτ−1 = 0.
This formulation gives a very intuitive characterization of condition 5.7:

(5.9) Sθ,τ−1 ≤ NPVπd
θ (σd | hτ )

i.e. it would have been optimal for type θ to “invest” an opportunity cost of utils yesterday
(by not following the spot optimal strategy) only if she expected a net present value that
would compensate her for the investment. We can further refine condition 5.7 by first
showing that

(5.10) W πd
θ (σd | hτ (r = 1)) ≥W θ (σd | hτ (r = 1)) ≥Wθ

Combining 5.10 with 5.7 implies a simple necessary condition for θ−rationalizability: if
(σd, πd) θ− rationalizes (hτ , cτ ), then

(5.11) W πd
θ (σd | hτ ) ≥ 1− β

β
Sθ,τ−1 +Wθ

Condition 5.11 also holds for any other history (hτ , cτ ), where we generalize the definition
of sacrificed utility as

(5.12) Sθ,τ−1 := max
r̃∈{0,1}

(Uθ,τ−1 − cτ−1) r̃ − (Uθ,τ−1 − cτ−1) rτ−1

5.11 puts restrictions on θ−rationalizing pairs (σd, πd) (and hence over policy functions )
based only on the previous period outcome, disregarding the information in the observed
history up to τ − 1. A striking feature of strong rationalizability is that in fact, 5.11 is also
sufficient: whether a policy function r (·) pair is strong rationalizable or not depends only
on the observed past sacrificed utility. Proposition 5.2 states the core result of this paper.

Proposition 5.2. Let (hτ , cτ ) ∈ Hp be θ−rationalizable. Then r (·) ∈ Rθ (hτ , cτ ) if and
only if there exists a measurable function w : Z →

[
Wθ,Wθ

]
such that

(5.13) (1− β) [Uθ (zτ )− cτ ] r (zτ ) + βw (zτ ) ≥ (1− β) [Uθ (zτ )− cτ ] r̂ + βWθ
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for all r̂ ∈ {0, 1} , zτ ∈ Z, and

(5.14)
ˆ
{(1− β) [Uθ (zτ )− cτ ] r (zτ ) + βw (zτ )} f (zτ ) dzτ ≥

1− β
β

Sθ,τ−1 +Wθ

Condition 5.13 is analogous to the ? notion of enforceability. A policy r (·) will be
“enforceable” at some history only if we can find a continuation payoff function that enforces
it on the set of strong rationalizable payoffs

[
Wθ,Wθ

]
. This argument employs the same

tools and insights as in ?. Condition 5.14 is the translation of condition 5.11 into this
notation. It resembles a promise keeping constraint in a dynamic contracting problem:
the expected value of following a rationalizable strategy σd at this history (given by the
right hand side of 5.14) must be greater than the value implied by the implied opportunity
cost paid in the previous period, which can be thought of as the utility “promised” by some
rationalizable pair (σd, πd). Its proof resembles closely the well known “optimal penal codes”
argument in ?: any strong rationalizable outcome can be enforced by switching to the worst
rationalizable payoff upon observing a deviation from the prescribed path of play. This
means that without loss of generality, we can check whether a policy r (·) is θ−rationalizable
if it is implementable whenever type θ thinks that if she deviated, she will have to play the
optimal robust policy from then on.

Proposition 5.2 requires the history (hτ , cτ ) to be θ−rationalizable. In order to be able
to use this characterization, we need to determine whether (hτ , cτ ) is also rationalizable.
Because of Lemma 5.1, we know that all histories reached by the optimal robust policy
for θ = new are new−rationalizable. Along its path, the observed history may or may
not be old−rationalizable as well. Determining whether a history is old−rationalizable is
equivalent to determining whether we have achieved robust separation: i.e. if a history
is new−rationalizable but is not old−rationalizable, then p should be certain he is facing
θ = new in the continuation path of the optimal robust policy. Let

(5.15) Smax
θ := β

1− β
(
Wθ −Wθ

)
be the maximum sacrifice level for type θ, that is consistent with common strong certainty
of rationality. Proposition 5.3 gives necessary and sufficient conditions for robust separation

Proposition 5.3. Take a new−rationalizable history (hτ , cτ ) ∈ Hp. Then, it is also
old−rationalizable if and only if Sold,k ≤ Smax

old for all k ≤ τ − 1

This proposition characterizes completely the conditions for strong separation from type
θ = old, along the path of any strong rationalizable strategy, in particular the optimal robust
one. The first result we infer from Proposition 5.3 is that robust separation can never be
achieved by the commitment cost decision. (see Lemma C.2 in Appendix C), and hence
θ = new can only separate from θ = old based only on how she reacted to the observed
shocks. The second result provides a recursive characterization of robust separation: if
separation has not yet occured up to period τ−1, θ = new will robustly separate from θ = old
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at period τ if and only if Sold,τ−1 > Smax
old . This happens because condition 5.14 cannot be

satisfied for any policy function r (·) and hence Rold (hτ , cτ ) = ∅. If Sold,τ−1 ≤ Smax
old , then

at τ + 1 the only relevant information to decide whether hτ+1 is old−rationalizable is Sold,τ ,
and hence this property is markovian. Proposition 5.2 shares this markovian feature: the
only relevant information to find the set of strong rationalizable policies Rθ (hτ , cτ ) is the
observed sacrifice Sθ,τ−1.

5.5. Characterization of Robust Implementation. In this subsection I will use the
characterization of Rθ (hτ , cτ ) of Proposition 5.2 to characterize the worst rationalizable
payoff of trusting, V (hτ , cτ ). Furthermore, to solve for the optimal robust strategy, I will
derive a recursive representation of the optimal robust policy, which will allow us to solve
Program 5.3 with a standard Bellman equation, using the familiar fixed point techniques of
?. Suppose that at a given a θ−rationalizable history (hτ , cτ ), p hypothesizes he is facing
type θ ∈ {new, old}. Using the characterization of Proposition 5.2, we can calculate the
minimum utility he can expect from trusting as:

(5.16) V θ (Sθ,τ−1, cτ ) := min
r(·),w(·)

ˆ
r (zτ )Up (zτ ) f (zτ ) dzτ

subject to the incentive compatibility constraint:

(5.17) (1− β) [Uθ (zτ )− cτ ] r (zτ ) + βw (zτ ) ≥ (1− β) [Uθ (zτ )− cτ ] r̂ + βWθ

for all r̂ ∈ {0, 1} , zτ ∈ Z

the “promise keeping” constraint:

(5.18) (1− β)
ˆ

[Uθ (zτ )− cτ ] r (zτ ) f (zτ ) dzτ + β

ˆ
w (zτ ) f (zτ ) dzτ ≥

1− β
β

Sθ,τ−1 +Wθ

and a feasibility constraint for continuation payoffs:

(5.19) w (zτ ) ∈
[
Wθ,Wθ

]
for all zτ ∈ Z

At a history that is both new and old−rationalizable, the worst strong rationalizable payoff
of trusting is

V (hτ , cτ ) = min {Vold (Sold,τ−1, cτ ) , Vnew (Snew,τ−1, cτ )}

Note that V (hτ , cτ ) depends on the observed history only through the sacrifices (Sold,τ−1, Snew,τ−1),
which makes the robust implementation restriction 5.4 to be markovian. The next proposti-
tion completely characterizes V (·) for all new−rationalizable histories. If incentives between
θ = old and θ = new satisfy an increasing conflict condition, then V (·) will be an increasing
function of the contemporaneous commitment cost.

Assumption 1 (Increasing Conflict). Distribution f (·) satisfies the increasing conflict con-
dition if f (Up, Uold) is non-decreasing in Uold when Up < 0 and non-increasing when Up > 0

Proposition 5.4. Take a new−rationalizable history hτ ∈ H.
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(1) If Sold,k ≤ Smax
old for all k ≤ τ − 1 , then

(5.20) V (hτ , cτ ) ≥ up ⇐⇒ Vold (Sold,τ−1, cτ ) ≥ up

(2) If Sold,k > Smax
old for some k ≤ τ − 1 , then there is a unique strong rationalizable

continuation strategy σ̂, which corresponds to the repeated spot optimum; i.e.

(5.21) cσ̂ (hτ ) = 0 and rσ̂ (hτ , zτ ) =

0 if Up,τ ≤ 0

1 if Up,τ > 0

and hence, for such stories

V (hτ , cτ ) =

Ez [max (0, Up)] if cτ = 0

Ez [min (0, Up)] if cτ > 0

(3) Under assumption 1 Vold (·) is increasing in cτ .

Assumption 1 states that when p prefers r = 0, then states with higher utility of r = 1 for
θ = old are more likely. Proposition 5.4 shows that the implementation restriction can be
written as a function of Sold,τ−1 only, which makes it the relevant reputation measure. When
the implied opportunity cost payed by θ = old is higher than Smax

old , the maximum net present
value that she could get in the continuation game, the observed history is inconsistent with
strong rationalizability (i.e. it is not old−rationalizable). At these histories, any system of
beliefs must be strongly certain that θ = new (since there is only two types), and hence
robust separation is achieved. This proposition also shows that when this happens, there is
an unique strong rationalizable strategy profile, which is to play the repeated spot first best,
since there are no confilct of interest between the parties, and both get their most prefered
outcomes (see Lemma C.3).

When Sold,τ−1 < Smax
old , the “promise keeping” condition 5.18 is tighter for higher values

of Sold,τ−1, since only continuation strategies with a higher net present value are consistent
with the observed history. Therefore, higher sacrifice makes Vold (Sold,τ−1, cτ ) weakly lower,
which in turn relaxes the robust implementation constraint 5.4 in the sequential program 5.3.
This observation reinforces the notion of sacrifice being the relevant reputation measure for
robust implementation program: higher values relax the implementation constraints, which
increases the value of the robust policy.

The basic assumptions made about the distribution of zτ may allow for local non-monotonicities
of Vold (Sold,τ−1, cτ ) with respect to the commitment cost cτ . Under the increasing conflict
assumption, higher commitment costs increase the minimum utility of facing θ = old. Defin-
ing c (s) = min

{
c ∈ C : Vold (s, c) ≥ up

}
, under this assumption we have Vold (Sold,τ−1, cτ ) ≥

up ⇐⇒ cτ ≥ c (Sold,τ−1)
In Appendix A I study in detail the solution (r (·) , w (·)) to 5.20. In Proposition A.1 I

show that under assumption there exist a threshold Ŝ ∈ (0, Smax
old ) such that if Sold,τ−1 ≤ Ŝ,

the promise keeping constraint does not bind, and hence it is identical to the solution of
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5.20 when Sold,τ−1 = 0, and Vold (Sold,τ−1, cτ ) = Vold (0, c). When Sold,τ−1 ∈
(
Ŝ, Smax

old

)
the

promise keeping constraint starts binding, making Vold (Sold,τ−1, cτ ) strictly increasing in
this interval. Figure 4 illustrates the results.

Figure 4. Worst Rationalizable Payoff Vold (s, c)
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Figure 5. Minimum commitment cost function

Intuitively, for small observed sacrifices, p cannot discard the possibility that if θ = old,
she is expecting to behave the same as if no sacrifice was observed. Therefore, a robust
choice for the commitment cost should prescribe exactly the same solution as in τ = 0:
the game basically “resets” and all reputation is lost at these histories. For intermediate
sacrifices, p still cannot rule out that θ = old, but can nevertheless impose some restrictions
on the set of rationalizable strategies, which are stronger the bigger the sacrifice observed.
When sacrifice is bigger than the maximum possible rationalizable net present value gain of
any continuation value for θ = old, the decision maker achieves strong separation, and hence
she knows p is certain θ = new for all rationalizable continuation strategies, and therefore
play the first best strategy with no commitment costs.

5.6. Recursive Representation of Optimal Robust Implementation. Based on the
recursive characterization of the implementation restriction, in this section I finally derive
a recursive representation of the optimal robust strategy σ∗new. To encode the state of the
problem (which depends both on the past sacrifice observed and the rationalizability of the
past history) we recursively define the following process: s0 = 0 and for τ ≥ 1:

sτ = Γ (sτ−1, cτ , zτ , rτ ) :=

maxr̂∈{0,1} [Uold (zτ )− cτ ] r̂ − [Uold (zτ )− cτ ] rτ if sτ−1 ≤ Smax
old

sτ−1 if sτ−1 > Smax
old

The state variable sτ−1 gives the sacrifice for θ = old as long as history hτ is old−rationalizable.
If at some τ the observed history is no longer old−rationalizable, then sτ+k = sτ > Smax

old ,
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so it also indicates when robust separation occurs. Because of Proposition 5.4 the robust
implementation restriction can be written as a function of sτ−1 alone: V (hτ , cτ ) ≥ up if and
only if V (sτ−1, cτ ) ≥ up, where

(5.22) V (s, c) :=


Vold (s, c) if s ≤ Smax

old

Ez [max (0, Up)] if s > Smax
old and c = 0

Ez [min (0, Up)] if s > Smax
old and c > 0

With these definitions, Proposition 5.4 allows us to rewrite the optimal robust strategy
program 5.3 as:

(5.23) Wnew = max
{c(·),r(·),sτ−1(·)}

(1− β)E
{ ∞∑
τ=0

βτ [Up (zτ )− c (hτ )] r (hτ , zτ )
}

(5.24) s.t. :

V [sτ−1 (hτ ) , c (hτ )] ≥ up for all hτ ∈ H (σ∗new)

sτ
(
hτ+1) = Γ [sτ−1 (hτ ) , c (hτ ) , zτ , r (hτ , zτ )] for all hτ+1 ∈ H (σ∗new)

To get a recursive formulation of Wnew (hτ ), let B =
{
g :
[
U,U

]
→ R with gbounded

}
and

define the operator T : B→ B as

(5.25) T (g) (s) = max
c∈C

ˆ {
max

r(z)∈{0,1}
(1− β) [Up (z)− c] r (z) + βg

[
s′ (z)

]}
f (z) dz

subject to

(5.26) V (s, c) ≥ up

and

(5.27) s′ (z) = Γ [s, c, z, r (z)] for all z ∈ Z

In Lemma C.7 I show T is a contraction with modulus β. Since B is a complete metric
space (when endowed with the sup-norm), we can use the contraction mapping theorem to
show the existence of a unique functionWnew (·) that solves the associated Bellman equation
T (Wnew) (·) =Wnew (·); which can expressed as

(5.28) Wnew (s) = max
c∈C:V(s,c)≥up

ˆ {
max
r∈{0,1}

(1− β) [Up (z)− c] r + βWnew
[
s′ (z)

]}
f (z) dz

subject to 5.26.
The term inside the integral is the maximization problem that θ = new faces after having

chosen c and after shock z has been realized: she faces a trade-off between short run utility
(1− β) [Up (z)− c] r and reputation gains βWnew [s′ (z)], which depend only on the sacrificed
that would be observed at the begining of the next period. This is possible since once the
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commitment cost was chosen, there is no restriction linking ex-post utility in different states.
The outer maximization choosing the commitment cost function corresponds to the optimal
choice of the commitment cost at the begining of the period. Because of Proposition 5.2 all
past history is completely summarized by the sacrificed observed in the previous period .
Notice that s only enters the right hand side problem only through restriction 5.26, which
only modifies the set of feasible commitment costs.

Proposition 5.5. Let c (s) and r (s, z) be the policy functions associated with the Bellman
equation 5.28. Then, for all hτ ∈ H (σ∗new)

(1) Wnew (hτ ) =Wnew (sτ−1), c∗ (hτ ) = c (sτ−1) and r∗ (hτ , cτ , zτ ) = r (sτ−1, zτ )
(2) If sτ−1 > Smax

old then c∗ (hτ ) = 0 and r∗ (sτ−1, z) = argmax
r̂∈{0,1}

Up (z) r̂

(3) If sτ−1 ≤ Smax
old and Assumption 1 holds, c∗ (hτ ) = c (sτ−1)

In the remainder of this section, I solve for the optimal robust policy r∗ (z) and the
law of motion for the sacrifice process s′ (z), under the increasing conflict assumption 1.
Figure 7 previews the shape of the optimal policy r∗ (z) = r∗ (Up, Uold) over the set of states
Z =

[
U,U

]2
⊂ R2. Regions where r∗ (Up, Uold) = 1 (i.e. d takes the emergency action) are

depicted in red, and r∗ (Up, Uold) = 0 in green. In the bottom we include the spot optimum
strategy for θ = new and for agent p. 25 In the right margin, we draw the analogous scale
for θ = old.

25The spot optimal policy for p is defined as rspotp (z) := 1 ⇐⇒ Up ≥ 0 . For and for type θ we have
rspotθ (z) := 1 ⇐⇒ Uθ ≥ c
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Figure 6. Static Best policy rspot (z) for θ = new

Figure 7. Optimal robust policy r∗ (z) for θ = new
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By comparing the optimal robust policy of Figure 7 to the spot optimal strategy for
θ = new in Figure 6, we see how the optimal robust policy is distorted from the spot
optimum towards actions that are spot inefficient for θ = old. For example, consider the
region where Uold > c so that rspotold (z) = 1. Figure 7 shows then that the optimal policy over
this region prescribes r∗ (Up, Uold) = 0 on a strictly larger set of states than rspotnew (z). The
intuition for this phenomenon is simple: if d plays rτ = 0, then p will observe an opportunity
cost payed by θ = old of Sτ = Uold − c > 0 utils. This will result in a smaller commitment
cost at τ + 1 than the one implied by playing r = 1 and reseting to the time τ = 0 robust
policy from tomorrow on. When the relative reduction in future commitment costs is big
enough (i.e. when observed implied sacrifice for θ = old) then the optimal strategy will be
to choose r = 0. In the rest of this section I will formally characterize both the robust policy
r∗ (z) and the next period sacrifice s′ (z), which governs the reputation formation process.

First, take the region R1 = {z ∈ Z : Uold > c+ Smax
old }, which corresponds to the upper-

most horizontal strip of Figure 7. For any z in this region, the unique rationalizable policy
for θ = old is to play r (z) = 1. This is because if she played r = 0, the implied sacrifice
S = Uold − c would be strictly greater than any potential net present value gain from
switching to the best rationalizable payoff (given by Smax

old ). Therefore, if θ = new chooses
r∗ (z) = 0 she would strongly separate from tomorrow on, achieving the first best payoff
Ez [max (0, Up)]. However, if she chose r∗ (z) = 0 then s′ (z) = 0 and next period the
commitment cost gets reset to c∗0, getting a continuation value ofWnew. Therefore, r∗ (z) = 0
over region R1 if and only if

βEz [max (0, Up)] ≥ (1− β) (Up − c) + βWnew ⇐⇒

(5.29) Up ≤ c+ Smax
new

If Up ≤ c then by playing r∗ (z) = 0 type θ = new would maximize both her spot and
her continuation values, achieving strong separation from τ + 1 on. Even when Up > c,
θ = new could still find it optimal to sacrifice spot gains for the strong separation that
would be achieved in the next period. Therefore, when the time inconsistent type has a
unique rationalizable strategy, the good type would optimally invest in reputation, sacrificing
present utility to achieve strong separation in the next period.

Second, take region R2 =
{
z ∈ Z : Uold ∈

(
c+ Ŝ, c+ Smax

old

)}
. In this region, θ = old

preferred strategy is still r = 1, but now r = 0 is also old−rationalizable. By playing
r = 0, θ = new cannot achieve separation in the next period, but she still can decrease the
commitment cost in the next period to cτ+1 = c (Uold − c). Therefore, the same analysis
from region R1 applies here, with the only difference that now the continuation value will
be W (Uold − c) < Ez [max (0, Up)]. Then, r∗ (z) = 0 over region R2 if and only if

Up − c ≤
β

1− β [W (Uold − c)−Wnew] := φ (Uold − c)
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Figure 8. Optimal Robust Sacrifice

where φ is an increasing function of the implied sacrifice S = Uold − c of playing r = 0 for
the time inconsistent type. As before, whenever Up < c then r = 0 will be optimal. When
Up > c her decision will depend on two variables: the spot disutility by not choosing r = 1
(Up − c) and the reputation value gained by choosing r = 0, φ (Uold − c). States with very
high disutility for r = 0 would only prescribe it as an optimal policy for states with high
potential sacrifice.

Finally, study region R3 =
{
z ∈ Z : Uold ∈

(
c, c+ Ŝ

)}
. See that regardless of the the

action, the sacrifice potential Uold− c is too small to make the commitment cost in the next
period to be smaller than its maximum possible level, c∗0. Therefore, regardless of the policy
chosen, in the next period reputation will be lost. Therefore the optimal robust policy is
just the spot optimal policy: r∗ (z) = 1 ⇐⇒ Up > c .

Is easy to see that when Uold < c, then the optimal robust policy analysis will be identical,
but with the role of each policy reverted, since it will be now when r = 1 that sacrifice may
be signaled. In Figure 8 we illustrate the map s′ (z). The dark blue areas correspond to
s′ (z) = 0 (i.e. all reputation is lost in the next period), and white regions are those in
which θ = new achieves full separation from tomorrow on. In the shaded areas, lighter color
illustrate higher sacrifice levels, and hence smaller commitment costs in the next period (but
not zero, as in full separation).
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5.7. Discussion. The reason why the robust policy problem ends up being quite tractable
is exactly because of the robustness condition: when having to make sure that p trusts in all
histories and for all rationalizable beliefs, the worst types (in the sense of beliefs) that pmight
be facing when deciding whether to trust or not, may correspond to very different beliefs
about d′s behavior. Because of this disconnect , we are able to separate the problems of
commitment cost choice and of the optimal robust policy rule r∗ (z). When more restrictions
are imposed (for example, a belief set B = {πnew, πold}, as in any Bayesian equilibrium),
this separation will be broken.

In terms of the optimal robust policy, note that there exist regions where p and both types
of decision maker would unanimously prefer certain strategy to be played, but because of
reputation building motives θ = new would still want to do exactly the opposite of the
unanimous optimal decision. For example, when Uold > c+ Smax

old and Up ∈ (c, c+ Smax
new ) all

agents prefer r = 1, but the optimal policy prescribes the normal action r = 0.
In the context of the capital taxation model, this would correspond with states where the

marginal utility of the public good is sufficiently high for both workers and capitalists, so that
both household types would agree that the ex-post optimal strategy would be to expropriate.
Through the lens of our model, we can summarize the policy maker’s decision by the following
argument: “Even as a pro-capitalist government, I am tempted to expropriate capitalists.
However, the incentives for a benevolent, time inconsistent government to expropriate would
be much higher than mine. Therefore, by not expropriating, I can show that I am in fact,
not the time inconsistent type”. Notice also that regardless of the beliefs that d may have,
any strong rationalizable strategy of d should also achieve separation at τ + 1, if she decides
to play r = 0. This then gives a robust prediction about d′s behavior, as long it is consistent
with common strong certainty of rationality.

A perhaps troubling feature of the robust policy is the impermanence of reputation gain:
only the sacrifice of the previous period matters, but past sacrifices do not provide relevant
information for reputation building. In the next section I find conditions on the set of beliefs
B so that the optimal robust implementation exhibits permanent reputation gains, and hence
all past sacrifices give some information about the continuation strategies that the decision
maker may be planning to follow.

6. Basic Properties of Strong Rationalizable Implementation

In this section I will study some features of the optimal robust policy. I will first show
how present potential sacrifices may affect the distribution of future sacrifices, creating
“momentum” for reputation formation. I will also show that the observed sacrifice process
achieves almost surely the bound Smax

old . Hence, by playing the robust policy d will eventually
convince p that θ = new, with probability one. Moreover, the speed of convergence to the
absorbing complete information stage (where p is certain that θ = new ) is exponential,
which is also the convergence rate of the best equilibrium of the game.
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I also study the asymptotic behavior of the robust policy as both the time consistent
and the time inconsistent type become more patient, and show that as the discount rate
approaches unity, the worst rationalizable payoff Wnew converges to the first best payoff,
and hence the value of the robust policy converges uniformly to the first best payoff (e.g.
for all histories). This further implies that the expected value of any strong rationalizable
strategy that θ = new may follow converges to the first best payoff as well, an analog result
to ?

6.1. Dynamics of the optimal robust policy. We saw in the previous section that only
immediate past behavior builds reputation, and past histories are irrelevant. However, it
seems intuitive that there should be some momentum in reputation gaining. The basic idea
is that gaining reputation at time τ will lower the commitment cost in the next period. The
lowering of commitment cost will allow the reformed type to exploit the difference in ex-post
payoffs between both types, which is the source of the difference between her and the time
inconsistent decision maker, and therefore making that the commitment cost in τ +1 should
also go down even more, in a probabilistic way. However, the degree of generality I have been
using so far does not allow for an easy characterization of the stochastic process followed
by the commitment cost c (Sτ−1) . Therefore, in this section I will show a somewhat weak
momentum result, using a plausible assumption on the primitives of the model

Assumption 2. In the static version of the game, we have

(6.1) Pr
(
argmax
r̃∈{0,1}

(Uold − c) r̃ = 0
)
> Pr

(
argmax
r̃∈{0,1}

(Uold − c) r̃ = 1
)

i.e. the optimal static decision rule for θ = old induces the normal action more often than
the emergency action

This assumption further reinforces our interpretation of the green button strategy (r = 0)
as the status quo: it is the strategy that both the good guy, and a trustworthy bad type would
play most often. As we saw in the previous section, the main driver of reputation building
is the sacrifice potential |Uold,τ − cτ |, a exogenous variable for d given the commitment cost
chosen. When the sacrifice potential is high is when d may decide to invest in reputation
building, and moreover, conditional on observing a sacrifice, higher sacrifice potential imply
lower commitment cost in the next period. While I cannot provide a characterization of the
commitment cost process, I can show that the expected value of the sacrifice potential goes
up when the commitment cost decreases.

Proposition 6.1. If Assumption 2 holds, then

(6.2) s ≥ s′ implies Ez {|Uold − c (s)|} ≥ Ez
{∣∣Uold − c

(
s′
)∣∣}

so that after higher observed sacrifices, we expect higher potential sacrifices. If s > s′ > Ŝ,
then the inequality in 6.2 is strict.
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To show our second result on the dynamics of the optimal robust policy, I will need this
very important lemma.

Lemma 6.1. For all old− rationalizable histories hτ ∈ H (σ∗d) , we have that:

(6.3) Pr (Up > c∗ (hτ )− Smax
new , Uold < c∗ (hτ )− Smax

old ) > 0

and

(6.4) Pr (Sτ ≥ Smax
old ) > q > 0 for all hτ+1 ∈ H (σ∗d)

where

(6.5) q := Pr (Up > c∗0 − Smax
new , Uold < c− Smax

new ) + Pr (Up < c+ Smax
new , Uold > c∗0 + Smax

old )

Proof. See Appendix C �

Lemma 6.1 is important on it’s own, and states first that all the regions considered in
the optimal robust policy have positive probability, and hence separation will surely occur.
Moreover, I get a uniform non-zero lower bound on the probability of separating at any
history, that can be easily calculated. With it, I can show its speed of convergence to strong
separation

Proposition 6.2. For all τ ∈ N

(6.6) Pr (Separating before τ periods) > 1−
(
1− q

)τ
Proof. In every trial history (new and old- rationalizable) there is at least probability q of
separating. Since shocks are i.i.d this implies that

Pr (Sold,k < Smax
old for all k ≤ τ) <

(
1− q

)τ
and hence Pr (Separating before τ periods) = 1 − Pr (Sold,k < Smax

old for all k ≤ τ) = 1 −(
1− q

)τ
�

This proposition states one of the most important results: the probability of reaching
separation from the time inconsistent type is exponentially decreasing in τ . A perhaps even
more important corollary is that in fact, for any belief restriction Bp that is consistent with
strong common certainty of rationality, (i.e. Bp ⊆ Bsp) we will also achieve separation in
exponential time, the probability of separation can only be higher for any smaller belief sets.
In the next section we will explore some “reasonable” restrictions we could impose, and see
how the solution would be improved.

The second important corollary is that eventually Sold,τ > Smax
old almost surely (and states

there after separation), so that d will surely separate eventually from the time inconsistent
type.

6.2. First Best Approximation by patient players. In this subsection the assumption
βold = βnew = β will be significant, since we will be increasing both discount rates. I will
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show that as both types become more patient, the payoff of the robust policy for θ = new

converges to the payoff of the stage game after separation. Now, the probability of separation
for history hτ will be denoted as q (hτ , β). I first show that these probabilities are uniformly
bound away from zero for all δ ∈ (0, 1) and all rationalizable histories

Lemma 6.2. Let q (hτ , β) be the ex-ante probability of separation under the optimal robust
strategy σ∗d . Then, there exist q̂ > 0 such that q (hτ , β) > q̂ for all hτ ∈ H (σ∗d) , β ∈ (0, 1)

Proof. See Appendix C �

The previous lemma shows the existence of a number q̂ > 0 such that no matter the
discount rate β , the probability of reaching separation in any new and old− rationalizable
histories is greater than q̂ . Since shocks are i.i.d, even if history may exhibit time depen-
dence, we can bound the expected time of separation by a geometric random variable with
success probability q̂ . Since once we reach separation, the unique rationalizable outcome is
the First Best (i.e. no commitment, spot optimum policy for θ = new ) and the speed of
convergence is exponential for this random variable, then for a sufficiently patient decision
maker d, the expected payoff of the robust policy will be very close to the first best (i.e.
the expected time for separation is very small in utility terms). This is what I show in the
following proposition

Proposition 6.3. Let Ez {max (0, Up)} be the first best payoff, corresponding to the case
where p is certain that θ = new , and let Wnew (β) be the ex-ante expected payoff for the
optimal robust policy. Then

(6.7) Wnew (β)→ Ez {max (0, Up)} as β → 1

Proof. For the robust policy, we always can bound it as

Wnew (β) ≥ Eτ {βτEz [max (0, Up)]}

where τ ∼ Geom (q̂) . This is true since Ez {r (hτ , z) (Up (z)− c (hτ ))} ≥ 0 by Lemma C.3.
Since we always have that the contemporaneous utility greater than zero and separation is
achieved with a probability greater than q̂ in any period, we have that this is a lower bound
for the robust policy payoff. See also that

Eτ (βτ ) =
∞∑
τ=1

βτ (1− q̂)τ−1 q̂ = q̂

1− q̂
β (1− q̂)

1− β (1− q̂) = βq̂

1− β (1− q̂)

Therefore
E [max (0, Up)]−Wnew (β) ≤ Ez [max (0, Up)] (1− Eτ (βτ )) =

= Ez [max (0, Up)]
(

1− βq̂

1− β (1− q̂)

)
= Ez [max (0, Uq)]

( 1− β
1− β (1− q̂)

)
→ 0

as β → 1. �
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If d is patient enough, because of discounting and the exponential speed of convergence
to separation, the payoff of the robust policy will be very close to the first best payoff.
Therefore, if events of distrust are sufficiently bad (as in our infinite cost interpretation of
p′s distrust), the risk of using a weaker solution concept may be substantial, if we are not
quite sure about the restrictions implied by it, while the potential increase in payoffs would
be almost irrelevant if d is patient enough.

6.3. Restrictions on Beliefs. In certain situations, the policy maker may have more in-
formation about the public p’s beliefs. I describe how this may be incorporated into the
problem. Gains of reputation are not permanent, so a natural question to ask is: what
restrictions on beliefs make reputation gains permanent? That is, when is cτ ≥ cτ+k for
every k?

Formally, say a strategy σd ∈ Σd exhibits permanent reputation gains if and only if
cσd

(
hτ+1) ≤ cσd (hτ ) for all histories hτ , hτ+1 ∈ H (σd). We already know that the opti-

mal robust strategy does not satisfy this property. The goal then is to find what type of
restrictions on beliefs should we impose to get a robust implementing strategy that exhibits
permanent reputation gains. Say a belief system πd is σ̂d - nondecreasing if and only if, for
all histories hτ , hτ+1 ∈ H (σ̂d),

NPVπd
old

(
σ̂d | hτ+1

)
≥ NPVπd

old (σ̂d | hτ ) .

This means that under belief π, θ = old cannot get less than what she expected in the
previous period, by playing strategy σ̂d. Denote also ND (σ̂d) ⊂ Σd be the set of best
responses to σ̂d−nondecreasing beliefs.

Proposition 6.4. Take a belief restriction set Bp ⊆ Bsp and σ∗d the optimal robust policy in
Bp. Then

σ∗d exhibits permanent reputation gains⇐⇒ Bp ⊆ Sp [{θ = old} × ND (σ∗d)].

That is, p is strongly certain that θ = old has σ∗d − nondecreasing beliefs.

Proof. I show necessity. Take a old−rationalizable pair (σd, πd) and a history hτ ∈ H (σ∗d)
such that ck = c∗0 for all k < τ − 1 and cτ < c∗0. This is a history where there has been
only one gain in reputation so far, and which has been realized only in the last period. The
fact that the commitment cost decreased has, as a necessary condition, that the observed
sacrifice should be higher than certain threshold level Ŝ; i.e.

(6.8) NPVπd
old (σd | hτ ) ≥ Sτ

Also, because hτ ∈ H (σ∗d) condition (6.8) also holds for σ∗d.Then, the only way the commit-
ment cost could go up in some other history hτ+s ∈ H (σ∗d), is that NPVπd

old

(
σd | hτ+s) < Sτ .

But since πd is σ∗d−nondecreasing, we have

NPVπd
old

(
σ∗d | hτ+s

)
≥ NPVπd

old (σ∗d | hτ ) ≥ Sτ > NPVπd
old

(
σd | hτ+s

)
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implying that σd is dominated by σ∗d at hτ+s . Then, the fact that the net present value
is always increasing will imply that the resulting commitment cost will be always non-
increasing. �

Intuitively, to get a strategy with permanent reputation gains, the assumption we need
to make on p′s beliefs about the time inconsistent type are the following: if θ = old and
we have observed that Sτ−1 = S, then the fact that she was willing to sacrifice S utils will
“stick”, and p will always think that θ = old will not settle for any smaller net present
value. This feature of beliefs are actually pretty common in dynamic adverse selection and
signaling problems.

Note that the important restriction is about p′s higher order beliefs: they are not about
what p thinks d will do, but rather what p believes d believes about the continuation game.
While working directly over system of beliefs can always be implemented, assumptions about
higher order beliefs are not very transparent in this framework. In Appendix (A) I explore
a different approach, by modeling restrictions on beliefs as type spaces, which allow the
modeling of assumptions on higher order beliefs more tractable.

7. Extensions And Further Research

I now address several extensions of the model and strategies for future research. First, a
natural alternative is to take a legislative approach, as in ? and ?. The policy maker may
have delegated the commitment choice to the public. The idea here is that if one delegates
the commitment cost to the public then certainly one will have robust implementation. The
relevant source of uncertainty in the problem is that the public mistrusts the government.
The intuition comes from contract theory: we should give control rights precisely to the
party who has the first-order inability to trust. However, this will come at a cost in terms of
efficiency. Specifically, the public would always put a higher commitment cost, to make the
optimal policy for θ = old not drive him to indiference between trusting or not. As such,
the public would increase commitment costs relative to the levels chosen by the new regime
government.Therefore, it is easy to show that, if the government has the same robustness
concerns, then the executive approach is superior for her in terms of welfare, given their
information.

Second, we may consider robustness to not just a single time inconsistent “old type” but a
multitude of time inconsistent types. Is straightforward to see that Proposition (5.2) would
still be true for any type space Θd and hence the characterization of V (hτ , cτ ) would now
be:

(7.1) V (hτ , cτ ) = min
θ∈Θd

Vθ (Sθ,τ−1, cτ )

where the function Vθ (c, s) is the minimum problem in (5.20) for a given payoff type θ.
Therefore, this will be equivalent to our dynamic contracting characterization of the problem
above but with multiple types. In the case of a finite type set Θd = {θ1, θ2, ..., θk} where we
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now have the vector of observed sacrifices Sτ−1 = (Sθ1,τ−1, Sθ1,τ−1, ..., Sθk,τ−1) as the state
variables for the implied promise keeping constraints. The solution would exhibit separation
from certain types across time, and if the other types satisfy the same assumptions made
about θ = old, then it will also eventually convince p about her being the time consistent
type.

A third extension is to an environment in which d has an imperfect signal about p′s
perceived incentives of the time inconsistent type. If signals are bounded and its support
may be affected by some signal that d observes, then robust policy would be qualitatively
identical.

Finally, looking forward, I would like to extend our analysis to situations in which there
are a continuum of strategies and policies available. This will allow researchers to apply this
robust modeling approach to various macroeconomic applications of interest, as the inflation
setting model of subsection (2.2). Is easy to see how Proposition (5.2) would remain valid
on more general models, so that the Markovian nature of reputation formation would be a
very general characteristic of this type of robustness.

8. Conclusions

I have studied the problem of a government with low credibility. A government faces
ex-post time inconsistent incentives due to lack of commitment, such as an incentive to tax
capital or an incentive to allow for undesirably high levels of inflation. The government
undergoes a reform in order to remove these incentives; however, the reform is successful
only if the public actually believes that the government has truly reformed its ways. As
such, the crux of the problem relies on the government building reputation in the eyes of
the public.

After arguing that the typical approach to this problem relies on equilibrium concepts,
which are highly sensitive to small perturbations about the public’s beliefs, I turned to
studying the problem through the lens of optimal robust policy that will implement the
public’s trust over any rationalizable belief that any party can hold. Focusing on robustness
to all extensive-form rationalizable beliefs, I characterize the solution as well as the speed of
reputation acquisition.

This is a particularly desirable property from the point of view of macroeconomic mech-
anism design. Equilibrium type solution concepts rely on every party knowing every higher
order belief of every other party involved in the interaction. This is an extremely high dimen-
sional object and in all likelihood it may be very difficult to believe that such an assumption
really holds in settings in which one agent is trying to convince the other agent that he is
not adversarial. Furthermore, equilibrium concepts rely on high dimensional belief functions
off the path of play – that is, nodes or histories that may never be reached. This sort of
sensitivity is problematic when advising a policy maker as small deviations in how a party
truly conjectures some off the path of play belief may severely affect the policy maker’s
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ability to obtain trust. This sort of analysis, studying optimal robust policy, can be a very
powerful tool within macroeconomic policy making.

Appendix A. Type Spaces

As mentioned before, the decision maker d acting as a “policy maker”, may have some
information about people’s beliefs about what strategy may be played by d , as well as as
beliefs d may hold, which may involve assumptions about higher order beliefs (what agent i
believes about j, what i believes about j’s beliefs about her beliefs, and so on. As reviewed
in ? the literature on epistemic game theory distinguishes between two approaches: an
explicit and an implicit approach. In the explicit approach, beliefs are modeled as subjective
probability measures over (1) the other players strategy, and (2) probability measures over
the beliefs of the other agents (which are themselves probability measures over the player’s
own strategy), etc. In the implicit approach, beliefs are formed over other player strategies
and “types”, where a type is directly mapped to a belief over strategies and types played by
the other agent. We will argue that for most applications, the implicit approach will be a
more tractable modeling assumption.

Formally, the explicit approach consists on modeling people’s beliefs as a hierarchy of
beliefs over the types and strategies that d could play, the beliefs that d may have about p’s
beliefs, and so on, ad infinitum. This means that a belief hierarchy is a sequence of measures
(π0, π1, π2, ...) where π0 is a CPS over {old, new} × Σd (the payoff types of d and with the
strategies that she can choose from), π1 is a measure over the space of such probability
systems (i.e. π1 ∈ ∆H

(
∆H ({old, new} × Σd)

)
), π2 ∈ ∆H

(
∆H

(
∆H ({old, new} × Σd)

))
and so on. The set of all possible coherent hierarchies of beliefs26 is denoted by H∗p , and can
be shown to have desirable topological properties27 Therefore, information about people’s
beliefs can be then represented as restrictions over the set of all coherent hierarchies; i.e. we
can represent our information on beliefs as a subset I ⊂ H∗p

While this approach has the advantage of being explicit about higher order beliefs, it is
cumbersome to work with. Note that we have to consider beliefs over exponentially larger
spaces. As an alternative, Harsanyi proposed an implicit approach (?). He suggested that
one could bundle all relevant information about beliefs and payoff parameters into different
“(epistemic) types” of agents, in the same way that we think about payoff types. As such,
we can model the system as a Bayesian game, with a larger type space. We formalize this
idea for our context:

Definition A.1 (Type Space). A type space T is a 5-tuple
(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
where Ti are sets of types for each agent, θ̂ : Td → {old, new} is a function that assigns to
each type td ∈ Td to a payoff type θ̂ (td) , and π̂i : Ti :→ ∆H (T−i × Σ−i) assigns a CPS
π̂i (ti) over strategy and type pairs (t−i, σ−i)
26See Definition B.1 in Appendix B
27See Appendix B for a formal treatment of the topological properties of the set of all coherent hierarchies.
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I intersect the approaches of ? and ?, a type encodes it’s payoff type (since d knows its
type) together with his beliefs about the other agent. The set of “states of the world” Ω−i
that agent i form beliefs over is then the set of pairs ω−i = (t−i, σ−i) of strategies and types of
the other agent. Unlike ? however, agents hold beliefs over other player’s types and strategies
as well, since in a dynamic environment these are not perfectly observed.28This method of
representing restrictions on beliefs has the advantage of being more compact (since only first
order beliefs have to be specified) and also being a natural generalization of Bayesian games.
For example, suppose the information we have about p is that p thinks that θ = old could
have two possible beliefs about the future play of the game: optimistic (expecting her best
equilibrium to be played) or pessimistic (expecting her worst equilibrium). If this was the
case, we could model this situation by simply augmenting the type space by creating two
copies of the old type: an “optimistic old type” tO and a “pessimistic old type” tW with the
same payoff parameter (θ̂ (tO) = θ̂ (tW ) = old ) but with different beliefs π̂d (tO) 6= π̂d (tW ).
The type sets assigned to d would then be Td = {new, tO, tP }.

In compact static games, ? and ? showed that these two approaches are equivalent: for
any subset of possible hierarchies of beliefs I ⊂ H∗ there exist a type space T that generates
the exact same belief hierarchies29 and vice versa.

In particular, if no restrictions are imposed on hierarchies (i.e. I = H∗) there exist a
universal type space T ∗ which is capable of generating all possible hierarchies of beliefs. In
another paper, (?) I extend ? to (non-metrizable)30topological spaces, to show that this is
also true in a relevant class of extensive form games. In Appendix B I provide an application
to our particular setting, and also a formal description of how we can make the mapping
between these two approaches.

Because of this equivalence result, I will use the implicit approach throughout this paper,
when modeling d’s information and assumptions about p′s beliefs. I will further consider
only compact type spaces, where the sets Ti are compact and Hausdorff topological spaces
(with some topology) and the belief functions πi (ti) are continuous in the weak convergence
sense: if a sequence ti,n → ti then πi (ti,n) (. | h) converges in distribution to πi (ti) (. | h) for
all h ∈ H. For most applications this will not be restrictive, since any type space that is
“closed” is homeomorph to a subset of the universal type space T ∗31 which is itself compact
(see Theorem B.1 in Appendix B), making T itself compact.

For an epistemic type td ∈ Td and a strategy σd ∈ Σd define the expected continuation
value for type td as

28This is the interactive epistemic characterization of ? and ?. This definition also corresponds to ? notion
of “conjectures”
29Formally, there is always a belief morphism between both types of spaces, as studied in Appendix B
30This is a relevant extension, since a very large class of relevant games in economics cannot be modeled
with metrizable type spaces. For example, any infinitely repeated dynamic game with a continuous strategy
space (such as Cournot duopoly, or most macro applications) are not metrizable.
31This is the main lesson from the Universal Type Space Theorem of ?,? and ?. See Theorem B.1 in
Appendix B
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(A.1) W td (σd | h) = W π̂
θ̂

(σd | h)with θ̂ = θ̂ (td) , π̂ = π̂d (td)

Likewise, given a type tp ∈ Tp and a strategy σp ∈ Σp define p’s expected value as

V tp (σp | h) = V π̂ (σp | h) where π̂ = π̂ (tp)

Also, we write SBR (ti) = SBRθ̂(ti) [π̂ (ti)]. An agent is then sequentially rational if the
strategy she chooses is a sequential best response to her beliefs: i.e. σi ∈ SBR (ti) The
interactive epistemic representation of types allows us to easily write this assumption; as the
subset of sequentially rational states Ri ⊂ Ti × Σi defined as:

(A.2) Ri := {(ti, σi) ∈ Ti × Σi : σi ∈ SBRi (ti)}

for i ∈ {d, p}. We write Σ∗i (T ) ⊆ Σi as the set of all sequentially rational strategies.

Definition A.2 (Robust Implementation). Given a type space T =
(
Td, Tp, θ̂, π̂p, π̂d

)
we say that a strategy σd is a robust implementation of trust if and only if for all histories
(hτ , cτ ) ∈ Hp (σd), all tp ∈ Tp and all σp ∈ SBR (tp) we have aσp (hτ , cτ ) = 1

Besides the information we have about beliefs (modeled by a type space T ) we might
also know (or be willing to assume) some common certainty restrictions on agents beliefs.
Following the construction of subsection 4.4 we can extend the definitions of weak and
strong rationalizable sets to type spaces, where the setsWCRki (T ) and SCRki (T ) ⊂ Ti×Σi

correspond to all the weak and strong rationalizable pairs. In Proposition B.3 we adapt
the result of ? to show that for compact type spaces, these sets are compact, which also
implies that the set of weak and strong rationalizable sets WCR∞i (T ) and SCR∞i (T ) are
non-empty, compact subsets of Ti. Together with the upper hemicontinuity of the sequential
best response correspondence, this implies that the sets of weakly and strongly rationalizable
strategies

(A.3) Σw
i := SBRi {W [WCR∞i (T )]} ,Σs

i := SBRi {S [SCR∞i (T )]}

are compact with respect to the product topology. With this formulation, we can work with
common certainty assumptions (of rationality or other assumptions about beliefs) and still
retain the type space representation we have been considering. When besides the restrictions
on beliefs modeled by the type space T , d is also willing to make assumptions about common
certainty of rationality, this can be thought of as refining the type space by getting a subspace
T̂ ⊂ T , formed only by types that have survived the iterative deletion procedure just
described. That is ti ∈ T̂i = WCR∞i (T ) if we use common weak certainty, and analogously
with SCR∞i (T ) for strong certainty.

With some abuse of notation, we will denote the type space resulting of this refinement
as T̂ = WCR∞ (T ) and T̂ = SCR∞ (T ) for the case of strong certainty. When a type
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space T can be written as it’s own weak rationalizable refinement (i.e. T = WCR∞ (T ))
we will say that T is consistent with weak common certainty of rationality, and analogously
for strong certainty

Armed with this concepts, we can give a definition of robust implementation that relates
to ?.

Definition A.3 (Weak Robust Implementation). A strategy σd is a weak robust im-
plementation of trust if if it implements it for all type spaces T such that T = WCR∞ (T )

In Appendix B I show how this is actually equivalent to doing robustness with the belief
space Bwp , and likewise for Bsp

Appendix B. Universal Type Space and Strong Rationalizable Strategies

In this section I adapt the results in ? on the characterization of the Universal Type
Space theorem and the study of the topological properties of the sets of weak and strong
rationalizable strategies to my setup, for any compact type space we might consider. It
generalizes ??? to general topological spaces, which is necessary because their results do
not apply to my paper. Their results require either finite strategies or finite periods, be-
cause their are obtained by extending ? to dynamic settings, which works with complete
metrizable strategy spaces. However, infinitely repeated games typically involve using the
weak convergence topology on the set of strategies, which is non-metrizable if, for example,
agents have a continuum of actions in each period. This section is organized as follows:
in subsection B.1 I introduce and give some results on the topology of strategy spaces. In
subsection B.2 I introduce the notion of hierarchies of beliefs, and study their topological
properties. In subsection B.3 I provide a version of the Universal Type Space Theorem (as
in ??) and finally, in subsection B.4 we apply the results we found in the previous sections
to characterize the compactness of the set of weak and strong rationalizable strategies, a
crucial result for the model studied in this paper.

B.1. Topological Properties of Strategy Spaces. We have that the set from which p
chooses is clearly Hausdorff, regular and compact Sp := {0, 1}.

We will now show that the set from which d chooses is also Hausdorff, compact and regular
since it is the product of two compact, regular and Hausdorff spaces:

(B.1) Sd := C ×G

where G =M (Z, {0, 1}), the set of measurable functions g : Z → {0, 1}. C ⊂ R is compact
by assumption, (and Hausdorff and regular because R is). We will show that G is also a
Hausdorff, compact and regular space with the product topology:i.e. point-wise convergence

(B.2) gn (.)→ g (.) ⇐⇒ gn (z)→ g (z) for all z ∈ Z

The compactness follows from 3 reasons:
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(1) G ⊂ {0, 1}Z =
∏
z∈Z {0, 1} = Ĝ which is a compact space with the product topology

described B.2, because of Tychonoff’s Theorem. It is also Hausdorff and regular
(Theorem 31.2 in ?).

(2) G is a closed subset of Ĝ, because of the Dominated convergence theorem (Theorem
2.24 in ?)

(3) G is therefore compact (since it is a closed subset of a Hausdorff compact space,
Theorem 26.2 in ?)

The fact that G is regular and Hausdorff is simply because it is a subspace of Ĝ, which
is a regular and Hausdorff space itself (Theorem 31.2 in ?). Because C and G and both
Hausdorff, compact and regular, Sd is also Hausdorff, compact and regular. Strategies for d
are functions

σd : Hd → C ×G

which can be written as
Σd ≡ (C ×G)Hd = SHdd

which by Tychonoff’s Theorem and Theorem 31.2 in ?, is also Hausdorff, compact and
regular, with the product topology; i.e.

(B.3) σ
(n)
d → σd if and only if

cn (hτ )→ c (hτ ) for all histories hτ ∈ Hd
gn (hτ , z)→ g (hτ , zτ ) for all (hτ , cτ , 1, zτ ) ∈ Hd

and

(B.4) σ(n)
p → σp if and only if an (hτ , cτ )→ a (hτ , cτ )

Note that, because of the boundedness of both c and g (·) we can apply the Dominated
convergence theorem (Theorem 2.24 in ?) to show that the function V (· | h) defined in 4.11
is a continuous function of σ ∈ Σ, and using Theorem Theorem 2.25 in ?, we can also show
that the continuation value function Wθ (· | h) defined in 4.10 is also continuous function
of σ ∈ Σ with the product topology. We summarize the results of this subsection in the
following Lemma.

Lemma B.1 (Topology of Σi). The strategy spaces Σi for i ∈ {p, d} are Hausdorff,
compact and regular topological spaces, with the topology of point-wise convergence (as in
B.3 and B.4). Moreover, for all histories h ∈ Hi, the conditional expected utility functions
V (σ | h) and Wθ (σ | h) as defined in 4.11 and 4.10 are continuous

B.2. Hierarchies of Beliefs. Given a topological space (X, τ), define ∆ (X) as the set of
all Borel probability measures on X. If X is a compact, Hausdorff space, then ∆ (X) is
also a Hausdorff and compact topological space (Theorem 3 in ?) with the weak-* topology.
This is the topology of the convergence in distribution: a sequence {λn}n∈N converges in
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distribution to λ (written as λn  λ) if and only if

(B.5)
ˆ
f (x) dλn (x)→

ˆ
f (x) dλ (x) for all f ∈M (X,R)

whereM (X,R) is the set of all measurable functions with respect to the Borel σ−algebra.
Moreover, all Borel probability measures on X are also regular (Theorem 5, ?). Therefore,
using Tychonoff’s theorem, the set [∆ (X)]H is also a compact, Hausdorff space with the
product topology (having point-wise the weak topology). The set of conditional probability
systems on X, which we write ∆H (X) is a closed subset of [∆ (X)]H (Lemma 1 in ?), and
therefore inherits compactness and Hausdorff property. We will say a conditional probability
system π is regular if and only if π (· | h) is a regular measure over X for all h ∈ H. These
results are summarized in the following Lemma

Lemma B.2 (Topology of ∆H (X)). Given a Hausdorff and compact topological space
X and a family H of histories, the space ∆H (X) of conditional probability systems on X

is also a Hausdorff, compact space with the product topology of convergence in distribution:
i.e. given a sequence {πn} ∈ ∆H (X) and π ∈ ∆H (X), we say

(B.6) πn → π in ∆H (X) ⇐⇒ πn (· | h) π (· | h) for all h ∈ H

Moreover, every π ∈ ∆H (X) is regular.

A useful corollary of Lemma B.2 will be needed for characterizing the best reply corre-
spondence. Given a type space T =

(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
, define now the functions

V (· | h) : Σp ×∆H (Td × Σd)→ R and Wθ (· | p) : Σd ×∆H (Tp × Σp) as

(B.7) Vp (σp, πp | h) := V πp (σp | h)

and

(B.8) Wθ (σd, πd | h) := W πd
θ (σd | h)

Corollary B.1 (Continuity of Expected Utility over types). If Ti are compact topo-
logical spaces for i = 1, 2, then the functions V (· | h) and Wθ (· | h) are continuous functions
(in the weak topology).

Proof. Since both functions are linear functionals in the space ∆ (T−i × Σ−i), for continuity
I only need to show boundedness of both functions. This follows from directly from Lemma
B.2 and the Dominated convergence theorem (which makes the convergence the weak con-
vergence). The continuity of V (. | h) with respect to σd has already been established in
Lemma B.1 �

I will now replicate here the inductive construction of the set of hierarchies of beliefs, as
in ?: Define first

(B.9) X0
p := Θd × Σd and X0

d = Σp
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X1
i := X0

i ×∆Hi
(
X0
j

)
for i ∈ {d, p}

and in general

(B.10) Xk
i := Xk−1

i ×∆Hi
(
Xk−1
j

)
Proposition B.1. Xk

i is a Hausdorff and compact topological space for all k = 0, 1, 2, ....
and i ∈ {d, p}. Moreover, x ∈ Xk

i ⇐⇒ x = (xk−1, π1, π2, ..., πk−1) where xk−1 ∈ Xk−1
i and

πs is a regular CPS on Xs
j for all s = 1, 2, ..., k − 1.

Proof. By induction, I will show that Xk
i is compact, Hausdorff, and it consists of regular

measures on its previous “level”. Clearly is true for k = 0, since from B.9 and Lemma B.1, we
know that X0

i is a Hausdorff and compact topological space. Now, assuming
{
Xk−1
i

}
i∈{p,d}

is Hausdorff and compact, I need to show that
{
Xk
i

}
i∈{p,d}

is also Hausdorff and compact.

Using Lemma B.2 we then know that ∆H
(
Xk−1
j

)
is compact and Hausdorff, and consists

of regular measures. This together with definition B.10 gives the desired result. The second
result follows from ? which show that we can write Xk

i simply as

(B.11) Xk
i = Σj ×

k−1∏
s=0

∆Hi
(
Xs
j

)
�

Define the set of hierarchies of beliefs for agent i ∈ {p, d} to be the set Hi = limk→∞X
k
i ,

which can be written (according to B.11) as

(B.12) Hi =
∞∏
k=1

∆Hi
(
Xk
j

)
So, an element h = (π0, π1, ...) ∈ Hi consists on a CPS π0 on Σj (the strategies of the
other agent), a CPS π1 on ∆Hj (Σi) (the CPS’s of j about i′s strategies), a CPS π2 on
∆Hj

(
∆Hi

(
∆Hj (Σd)

))
, and so on. Clearly the space Hi is compact and Hausdorff, because

of Proposition B.1 and Tychonoff’s theorem. We summarize these results below

Proposition B.2 (Topology of Hi). The set of hierarchies of beliefs Hi for i ∈ {p, d} as
defined in B.12 are Hausdorff and compact topological spaces, with the point-wise convergence
in each level:

(B.13) hn =
(
πkn

)
k∈N
→ h =

(
πk
)
k∈N

⇐⇒ πkn (· | h) πk (· | h) for all k ∈ N,h ∈ Hi

Moreover, for all hierarchies h =
(
πk
)
k∈N

and all k ∈ N, we have that πk ∈ ∆Hi
(
Xk
j

)
is

a regular CPS

B.3. Construction of the Universal Type Space. Not all hierarchies of beliefs will be
“rational”, in the sense that upper level beliefs (say, k−order beliefs) may not be consistent
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with lower level beliefs. We say that a hierarchy h ∈ Hi is coherent when different levels of
beliefs are consistent with each other. The formal definition is given by ? (Definition 1) :

Definition B.1 (Coherency). A hierarchy of beliefs h ∈ Hi is coherent if and only if

(B.14) mrgXk−1
j

πk+1 (· | h) = πk (· | h) for all h ∈ Hi, k ∈ N

where mrgXk−1πk+1 is the marginal of measure πk+1 on the projection Xk−1.

Definition B.1 is also identical to the definition of projective sequence of regular Borel
probability measures, as in ? (Definition 7), since by B.2 we know that all measures (and
their projections) involved in the hierarchies are regular probability measures. We write H∗i
to mean the set of coherent hierarchies of beliefs for agent i. Is easy to see that coherency is
a closed restriction of the space Hi, which readily implies that H∗i is itself a Hausdorff and
compact subspace of Hi.

Define

(B.15) T ∗p = H∗p , T
∗
d = Θd ×H∗d

So, the universal type sets are simply the sets of all coherent hierarchies of beliefs for each
agent. See also that the identity mappings make sense, in that an element in H∗i is precisely
a coherent CPS on the elements of H∗j . In order to understand the maximality property
of the type space we want to construct, in the sense that all other type spaces are in some
way embedded into it, I need to define the concept of type-morphisms. Given two type
spaces T =

(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
and T ′ =

(
T ′p, T

′
d, θ̂
′ (·) , π̂′p (·) , π̂′d (·)

)
and a function

ϕi : Σj×Tj → Σj×T ′j with i ∈ {p, d} and j 6= i, define ϕ̃i : ∆Hi (Σj × Tj)→ ∆Hi
(
Σj × T ′j

)
as the function associating to each CPS πi on Σj×Tj the induced CPS ϕ̃ii (µi) over Σj×T ′j ,
as defined in ? (Subsection 3.1). Formally, given πi ∈ ∆Hi (Σj × Tj) we have

(B.16) ϕ̂i (µi) (A | h) = πi
(
ϕ−1
i (A) | h

)
for all measurable A ⊂ Σj × T ′j , h ∈ Hi

i.e. it gives events in Σj × T ′j the probability according to µi in the pre-image of that event
in Σj × Tj .

Definition B.2 (Type-morphisms (?)). Given two type spaces T =
(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
and T ′ =

(
T ′p, T

′
d, θ̂
′ (·) , π̂′p (·) , π̂′d (·)

)
we say that a pair of functions ϕ = (ϕp, ϕd) where

ϕi : Ti → T ′i is a type morphism from T to T ′ if and only if the functions ϕi are continu-
ous, and satisfy

(B.17) π̂′i [ϕi (ti)] = ϕ̃i [π̂i (ti)] for all ti ∈ Ti,i ∈ {p, d}

and

(B.18) θ̂′ [ϕd (td)] = θ̂ (td) for all td ∈ Td

When ϕ is a homeomorphism we say that T and T ′ are type-isomorphic.



CREDIBLE REFORMS: A ROBUST IMPLEMENTATION APPROACH 53

Conditions B.17 and B.18 state that the beliefs and utility parameters (respectively) of
all types in T can be mapped (in a continuous way) into beliefs and parameters of T ′ . The
intuitive idea of this definition is that T is “smaller” than T ′, since every type in Ti can
be mapped to a subset of types in T ′i (i.e. the image of ϕ) that have essentially the same
epistemic properties: same beliefs and same utility parameters.

The following Theorem is a simple consequence of Theorem 8 in ? and Proposition 3 in
?, adapted to the modified topological assumptions of this model.

Theorem B.1 (Universal Type Space Theorem). The sets T ∗p and T ∗d defined in B.15
satisfy:

(B.19) T ∗p is homeomorphic to ∆Hd (T ∗d × Σd)

and

(B.20) T ∗d is homeomorphic to Θd ×∆Hd
(
T ∗p × Σp

)
with homeomorphisms Qp : T ∗p → ∆HP (T ∗d × Σd) and Qd : T ∗d → Θd × ∆Hd

(
T ∗p × Σp

)
.

The type space T ∗ =
(
T ∗p , T

∗
d , θ̂
∗ (·) , π̂∗p (·) , π̂∗d (·)

)
with

(
θ̂∗ (·) , π̂∗d (·)

)
= Qd (·) and π̂∗p (·) =

Qp (·) is called the Universal Type Space, and has the following property: for any other
type space T there exists a (unique) type morphism ϕ between T and T ∗

Proof. Proposition B.2 tells us that all measures in a hierarchy are regular measures. This,
together with Theorems 8 and 9 in ? proves conditions B.19 and B.20, by applying the
Generalized consistency theorem to each individual history h ∈ H and constructing the
homeomorphism by defining it history by history. The universality condition is an almost
direct application of Proposition 3 in ? since we can easily replicate the proof step by step
with our topological assumptions. �

B.4. Topology of Rationalizable sets. In this section I show that the set of rationalizable
strategies for any compact type space is in fact, a compact subset of the set of strategies,
which I characterized in subsection B.1. Moreover, the set of strongly rationalizable strate-
gies will be in fact, a subset of the weak rationalizable strategy set, implying that strong
rationalizability is a closed, stronger solution concept. This will be useful when using the
structure theorems in ?. The main tool I will be using to prove stated in ?

Theorem B.2 (Berge’s Theorem of the Maximum (?)). Let X and Y be topological
spaces, with Y regular, a continuous function f : X × Y → R and a continuous, non-empty
and compact valued correspondence Γ : X ⇒ Y . Then the function

M (x) := max
y∈Γ(x)

f (x, y)

is well defined and continuous, and moreover, the correspondence

g (x) := arg max
y∈Γ(x)

f (x, y)
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is non-empty, compact valued and upper hemi-continuous.

The most important consequence of the theorem of the maximum is the continuity and
upper hemicontinuity of the value and best response functions, respectively

Proposition B.3 (Continuity of Sequential Best Responses). For any type space T =(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
and any ti ∈ Ti define the sequential best response correspondence

SBRi : Ti → Σi that gives the sequential best responses for type i. Then, if π̂i (·) for
i ∈ {p, d} are continuous functions, SBRi (ti) is a non-empty, compact valued and upper-
hemi continuous correspondence.

Proof. I will only show the continuity of SBRd, since SBRp follows a similar (and easier)
argument. Corollary B.1 tells us thatWθ (σd, πd | h) is a continuous function of the CPS πd,
and Proposition B.1 tells us that it is also a continuous function of σd (taking πd as given),
which makes Wθ (· | h) a continuous function over Σd × ∆Hd (Tp × Σp) (with the product
topology). Proposition B.1 also implies that the set Σd is regular, Hausdorff and compact.
The domain of the program is Σd, which is a constant correspondence, hence continuous,
non-empty and compact valued (since Σd is compact). Therefore, we can apply the theorem
of the maximum B.2 to show that the correspondence

φ (θ, πd | h) := arg max
σd∈Σd

Wθ (σd, πd | h)

is a continuous, non-empty and compact valued u.h.c correspondence of (θ, πd) for all h ∈
H, (continuity on θ comes for free with it’s finiteness) which therefore implies that the
correspondence φ̂ (θ, π) = (φ (θ, πd | h))h∈H is also a continuous, non-empty and compact
valued u.h.c correspondence. The desired result then follows from the continuity of π̂d, since

SBRd (td) = φ̂
[
θ̂ (td) , µ̂d (td)

]
a composition of an u.h.c correspondence with a continuous function, which is also a u.h.c
correspondence, as we wanted to show. Compactness also follows from continuity (Weier-
strass). �

Now I present the main result of this section

Theorem B.3 (Topological Properties of Weak and Strong rationalizability).
Take a compact type space T =

(
Tp, Td, θ̂ (·) , π̂p (·) , π̂d (·)

)
and recall the definitions of

WCRki (T ) ⊂ Σi and SCRki (T ) ⊂ Σi as the set of weak and strong rationalizable strategies
for type space T . Then:

(1) The sets WCRki (T ) and SCRki (T ) are non-empty, compact, Hausdorff and regular
spaces, and satisfy WCRki (T ) ⊆ SCRki (T ) for all k ∈ N, i ∈ {p, d}

(2) The rationalizable sets WCR∞i (T ) ⊆ SCR∞i (T ) are also non-empty, compact,
Hausdorff and regular spaces for i ∈ {p, d}



CREDIBLE REFORMS: A ROBUST IMPLEMENTATION APPROACH 55

(3) The set of all weak rationalizable strategies WCR∞i ⊂ Σi and strong rationalizable
strategies SCR∞i ⊂ Σi are non-empty, compact, Hausdorff and regular spaces, and
satisfy WCR∞i ⊂ SCR∞i for i ∈ {p, d}.

Proof. (1) follows directly from Propositions 3.5 and 3.6 in ?, since the strategy space Σi

is compact (Proposition B.1) and the best response correspondences are u.h.c, non-empty
compact valued (Proposition B.3). The restrictions on the rationalizable sets can also be
mapped as restrictions on the type space, as shown by ?. The fact that WCR∞i (T ) and
SCR∞i (T ) are non-empty follows from the compactness and non-emptiness proved in follows
from (2) and the generalization of Cantor’s Theorem, which states that the intersection of
a decreasing sequence of non-empty compact sets is non-empty (Theorem 26.9 in ?). Since
WCRki (T ) and SCRki (T ) are compact, they are also closed sets, which make WCR∞i (T )
and SR∞i (T ) closed. Because Σi is a Hausdorff space, this also implies thatWCR∞i (T ) and
SCR∞i (T ) are also compact spaces (Theorem 26.2 ?). Regularity follows from regularity of
Σi, and therefore we have shown (2). For (3) we use the universal type space theorem B.1
to be able to write

(B.21) WCR∗i ≡
⋃

T :T is a type space

WCR∞i (T ) = WCR∞i (T ∗)

and

(B.22) SCR∗i ≡
⋃

T :T is a type space

SCR∞i (T ) = SCR∞i (T ∗)

and we use again this theorem to recall that the type space T ∗ consists of compact type
spaces T ∗i with continuous belief functions π̂∗i . Therefore we can apply the result in (3) for
the particular case of T = T ∗. �

Appendix C. Proofs and Supplementary Results

I will need some extra notation for the proofs in this section. Given an appended history
hs =

(
hτ , hk

)
, I write hs ∼ hτ = hk for the tail of the history. Also, whenever we can

decompose hs in this manner, I will say that hτ precedes hs and write hτ ≺ hs.

Proof of Lemma 5.1. The first part is a consequence of Lemma (C.3) in Appendix C. For
the second result, take a robust and strong rationalizable strategy σd and suppose there
exist a history h and a strong rationalizable pair (σ̂d, π̂d) that deliver an expected payoff
that is less than the payoff of the robust policy:

W π̂d
θ (σ̂d | h) < Wθ (σd | h) .

However, if π̂d has common strong certainty of rationality, then she is also certain that p
plays strong rationalizable strategies (Proposition 3.10 in ?), and hence she should be also
certain that by following the robust strategy σd from history h on she will get a higher
expected payoff. Since this is true for any rationalizable belief, σ̂d cannot be the sequential
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best response for beliefs π̂d (since it is conditionally dominated by σd at h), reaching a
contradiction �

Lemma C.1. Take a history hτ and θ−rationalization (σd, πd) . Also, let ν = (σ̂d, π̂d) be
another θ−rationalizable pair that satisfies:

(C.1) W π̂d
θ

(
σ̂d | h0

)
≥ 1− β

β
Sθ,τ−1 +Wθ

Then, there exists a pair (σνd , πνd) that also θ−rationalizes hτ and is such that

(C.2) σνd (hs) = σ̂d (hs ∼ hτ ) , πνd (· | hs) = π̂d (· | hs ∼ hτ )

for all histories hs � hτ

Proof. Define the pair (σνd , πνd) for any history h̃s as

(C.3) σνd

(
h̃s
)

:=


σd
(
h̃s
)

if s < τ or h̃s = hτ

σ∗θ

(
h̃s ∼ h̃τ

)
if s ≥ τ and hτ ⊀ h̃s

σ̂d
(
h̃s ∼ hτ

)
if s ≥ τ and hτ ≺ h̃s

and for any measurable set A ⊂ Σp

(C.4) πkd

(
A | h̃s

)
:=


πd
(
A | h̃s

)
if s < τ

πθ

(
A | h̃s ∼ h̃τ

)
if s ≥ τ and hτ ⊀ h̃s

π̂d
(
A | h̃s ∼ hτ

)
if s ≥ τ and hτ � h̃s

so the pair (σνd , πνd) coincides with (σd, πd) for any histories of length less than τ − 1, and
strategies also do it up to time τ . If at history

(
hτ−1, cτ−1, aτ−1, zτ−1

)
d deviates from

r = rσd
(
hτ−1, zτ−1

)
going to h′τ , then type θ believes that she will switch to the optimal

strong rationalizable strategy from then on, to which the best response is σ∗θ and the expected
payoff is

W
πνd
θ

(
σνd | h′τ

)
= W

πθ
θ

(
σ∗d | h0

)
= Wθ

which is a rationalizable continuation pair. Same is true for the continuations at all histories
after hτ , and so the pair (σνd , πνd) is rationalizable. Then, to finish our proof, we need to
show that it is consistent with hτ only at rτ−1. Consider first the case where rτ−1 = 0 and
Sθ,τ−1 = Uθ,τ−1 − cτ−1 > 0. Then, the optimal choice under

(
σkd , π

k
d

)
is

βW
πνd
θ (σνd | hτ ) ≥ (1− β) (Uθ,τ−1 − cτ ) + βWθ ⇐⇒

W π̂d
θ

(
σ̂d | h0

)
≥ 1− β

β
Sθ,τ−1 +Wθ

which is the assumption made in C.1. The other cases are shown in a similar fashion. �
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Proof of Proposition 5.2. Given the functions (r (·) , w (·)) that satisfy conditions 5.13
and 5.14, I need to construct a θ−rationalizable pair (σd, πd) such that rσd (hτ , zτ ) = r (zτ )
for all z ∈ Z. Because the set or rationalizable payoffs is convex, we know that for any
w ∈

[
Wθ,Wθ

]
there exist some rationalizable pair (σw, πw) such that

W πw
θ

(
σw | h0

)
= w

then, for all z ∈ Z we can find a rationalizable pair (σ̂z, π̂z) such that

(C.5) W π̂z
θ

(
σ̂z | h0

)
= w (z)

which are rationalizable continuations from time 0 perspective. Moreover, see that that r (z)
solves the IC constraint 5.13 for this continuations, which means that it would be the best
response at τ = 0 if θ expected the continuation values w (z) starting from τ = 1. Formally,
let h1 (z) = (c0, a0, z0 = z, r0 = r (z)) and define the strategy σ0 as

σ0 (hτ ) =


(cτ , r (·)) if h = h0

σz
(
hs ∼ h1 (z)

)
if h1 (z) ≺ hs

σ∗θ
(
hs ∼ h1) otherwise

i.e. upon deviations in the first period, goes to the optimal robust strategy, and by following
the proposed policy r (z) it continues prescribing strategy σz after that history, which gives
an expected payoff of w (z). This then implies that the policy function is θ−rationalizable
at h0, and that it’s expected payoff is

W π0
θ

(
σ0 | h0

)
= Ez [(1− β) r (z) (Uθ − cτ ) + βw (z)] ≥ 1− β

β
Sθ,τ−1 +Wθ

But then we can use Lemma C.1 for the pair (σ̂d, π̂d) = (σ0, π0), finishing the proof. �

To show Proposition 5.3 we will need the following Lemma

Lemma C.2 (No strong separation by commitment costs). Take a history hτ that is
strong rationalizable for both types, and a commitment cost ĉ such that (hτ , ĉ) is new−rationalizable.
Then, (hτ , ĉ) is old−rationalizable as well.

Proof. Suppose not. Then, at history (hτ , ĉ) type θ = new would achieve robust separation.
I will now construct a system of beliefs π ∈ Bsd, for any continuation history h :

(C.6) π (A | h) =


1 if h � (hτ , ĉ) and σFBp ∈ A

1 if h � (hτ , ĉ)and σp ∈ A

0 otherwise

where σFBp is the first best strategy for p if he faces θ = new, and σp (h) = 0 for all histories
(i.e. not trust for all continuation histories). See that because of robust separation, for any
continuation history h that is new−rationalizable, this will be a rationalizable strategy if
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p puts measure 1 on θ = new. If a continuation history h is not new−rationalizable, then
because we assumed it is not old−rationalizable either, then strong rationalizability puts no
restrictions on beliefs after such histories, and hence σp is a strong rationalizable continuation
strategy at these histories. Define σ̂d as

(C.7) σ̂d (h) =


(
ĉ, rspotold (· | ĉ)

)
if h = hτ(

0, rspotold (· | c = 0)
)

if h � (hτ , ĉ)

(∞, rg (·)) if h � (hτ , ĉ)

where rspotθ (z | c) = argmax
r∈(0,1)

(Uθ − c) r and rg (z) = 0 for all z ∈ Z. Is easy to see that

σ̂ ∈ SBRold (π) since if c 6= ĉ then utility will be uold, and

uold < 0 < (1− β)E {max (0, Uold − ĉ)}+ βE {max (0, Uold)} = W π
old (σ̂d | hτ )

and clearly it is the best response for the continuation histories. But then choosing c = ĉ is
a strong rationalizable strategy for θ = old, a contradiction. �

Proof of Proposition 5.3. We will do it by induction: suppose k = 0. Since h0 = ∅ is
rationalizable for both types, Lemma C.2 implies that if c0 is new−rationalizable, history(
h0, c0

)
is old−rationalizable as well. For k > 1, suppose that history

(
hk−1, ck−1

)
has been

both new and old−rationalizable, and we know that
(
hk, ck

)
is also new−rationalizable.

Because of Lemma C.2 history
(
hk, ck

)
can be old−rationalizable as well if and only if

hk =
(
hk−1, ck−1, ak−1, zk−1, rk−1

)
is also old−rationalizable. Since by the induction step

we assumed
(
hk−1, ck−1

)
is old−rationalizable, we need to rationalize only the choice of

rk−1 after shock zk−1. But here we can apply directly Proposition 5.2, getting that hk is
old−rationalizable if and only if Sold,k−1 = maxr̃∈{0,1} (Uold,k−1 − ck−1) r̃−(Uold,k−1 − ck−1) rk−1 ≤
Smax
old . This concludes the proof. �

To prove Proposition 5.4, we will need two lemmas first:

Lemma C.3. For any strong rationalizable strategy σd ∈ ΣSR
new , and any new−rationalizable

history, we have

(C.8) Ezτ {rσd (hτ , zτ ) [Up (zτ )− cσd (hτ )]} ≥ 0

Proof. The proof will follow from 2 steps:
Step 1: Let Wnew ≥ Smax

new . This is equivalent to showing

Wnew ≥
β

1− β {Ezτ [max (0, Up (zτ ))]−Wnew} ⇐⇒

Wnew ≥ βEzτ [max (0, Up (zτ ))]
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Suppose Wnew < βEzτ [max (0, Up (zτ ))]. Then the following strategy would be strongly
rationalizable: prohibit r = 1 at hτ and in τ + 1 d separates completely. See that since type
θ = old never prohibits r in any rationalizable strategy, then strong certainty of rationality
would imply that θ = new from then on. Therefore, this strategy would then be a robust
one, and therefore Wnew ≥ βEzτ [max (0, Up (zτ ))] from the fact that Wnew is the maximum
utility over robust strategies, and thus reaching a contradiction.

Step 2: Ezτ [rσd (hτ , zτ ) (Up (zτ )− cσd (hτ ))] ≥ 0 for all σd ∈ ΣSR
new and all rationalizable

histories hτ .
For any rationalizable strategy σd we have

(1− β)Ezτ [rσd (hτ , zτ ) (Up (zτ )− cσd (hτ ))] + βEzτ [max (0, Up (zτ ))] ≥W σd
new (hτ ) ≥Wnew

This also implies then that

(1− β)Ezτ [rσd (hτ , zτ ) (Up (zτ )− cσd (hτ ))] ≥ βWnew−βEz [max (0, Up (zτ ))]+(1− β)Wnew ⇐⇒

Ezτ [rσd (hτ , zτ ) (Up (zτ )− cσd (hτ ))] ≥Wnew − Smax
new ≥ 0

using Step 1 in the last inequality. �

Lemma C.4. There exist a non-zero measure set S̃ ⊂ [0, Smax
old ] such that ∂Wn

∂s (s) > 0 for
all s ∈ S̃ and hence V (s, c∗ (s)) = up for all s ∈ S̃

Proof. Notice first that for all s we have E [r (z | s)] = Pr [r (z | s) = 1] > 0 . This is
because if it wasn’t, then utility of this policy at s would give utility 0, whereas we could
have chosen c = c (s) and get positive utility, together with positive probability of playing
r = 1 . Suppose not, so that ∂Wn

∂s = 0 for all s for which the derivative exists (which are
almost everywhere). Pick a s such that the constraint is not binding: i.e. V (s, c∗ (s)) > up
(which must necesarily exist given the characterization of the minimum cost function c (s).
Take the optimal policy at that state, which is r (z) = r∗ (z), s (z) = s∗ (z) and c = c∗. We
will construct a local feasible deviation: keep the same policy function r (z) and only reduce
the commitment cost to c̃ = c − ε, which implies that the next period sacrifice would now
be

s (z, ε) = max
r̃∈[0,1]

(Uold (z)− c+ ε) r̃ − (Uold (z)− c+ ε) r (z)

The utility of the right hand side maximized problem was �

(1− β)E [(Uold (z)− c) r (z)] + βEW [s (z)]

and with the deviation is

(1− β)E [(Uold − c+ ε) r (z)] + βEW [s (z, ε)]

we will show that it is a stricly increasing deviation:

(1− β)E [(Uold (z)− c) r (z)]+βEW [s (z)] < (1− β)E [(Uold (z)− c+ ε) r (z)]+βEW [s (z, ε)] ⇐⇒
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(C.9) (1− β) Pr [r (z) = 1] ε+ βE {W [s (z, ε)]−W [s (z)]} > 0

Because W is differentiable almost everywhere, then for almost all z ∈ Z we can make the
differential approximation around ε = 0:

W [s (z, ε)]−W [s (z)] ≈ ∂W
∂s

[s (z)]
[
∂s (z, ε)
∂ε

|ε=0

]
ε

and using the envelope theorem
∂s (z, ε)
∂ε

= rspotold (z | c− ε)− r (z)

so that evaluating it at ε = 0 we simplify this condition as

W [s (z, ε)]−W [s (z)] ≈ ∂W
∂s

[s (z)]
[
rspotold (z)− r (z)

]
ε

then for small enough ε condition C.9 is satisfied if and only if

(C.10) (1− β)
ˆ
r (z) f (z) dz + β

ˆ [
rspotold (z)− r (z)

] ∂W
∂s

[s (z)] f (z) dz > 0

The assumption Pr (r (z) = 1) > 0 implies that condition C.10 will necesarily hold if we can
show ˆ [

rspotold (z)− r (z)
] ∂W
∂s

[s (z)] f (z) dz > 0

Because the only potential mass-point for the implied distribution for s′ (z) is at s = 0
(when there is no sacrifice, sacrifice is zero, and this can happen if rspotθ 6= r has positive
probability) and we already know that W is locally constant in the interval [0, ŝ] we also
have that ∂W

∂s (0) = 0. Therefore,

∂W
∂s

[s (z)] = 0 a.e in z ∈ Z

which given the absolute continuity of Z delivers the desired result.

Lemma C.5. If V (s, c∗ (s)) > up for some s, then it also holds for all s′ ∈ (s, Smax
o )

Proof. It follows by inspection of the first order conditions of the lagrangian problem, since
s only enters the conditions through this constraint, which implies that if it is non-binding
at s it is also non-binding at s′ > s, since increasing the sacrifice only relaxes this constraint,
which was not binding in the optimum. �

Corollary. There exist s > ŝ such that for all s ≤ s we have c∗ (s) = c (s) and for s ≥ ŝ we
have c∗ (s) = c (ŝ)

Lemma C.6. Under the increasing misalignment assumption 1, given ε, δ > 0, the func-
tions:

G (a, b | ε, δ) :=
ˆ a

a−ε

[ˆ b

b−δ
upf (up, uo) dup

]
duo
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and
H (a, b | ε, δ) =

ˆ a+ε

a−ε

[ˆ b+δ

b−δ
upf (up, uo) dup

]
duo

satisfies ∂G
∂a .

∂H
∂a ≤ 0. If up ∂f∂up ≥ 0 for all z, then we also have ∂G

∂b > 0

Proof. Using Leibnitz rule:

∂G

∂a
=
ˆ b

b−δ
upf (up, a) dup −

ˆ b

b−δ
upf (up, a− ε) dup =

ˆ b

b−δ
up [f (up, a)− f (up, a− ε)] dup

which is negative given our assumption. Moreover,

∂H

∂a
=
ˆ b+δ

b−δ
up [f (up, a+ ε)− f (up, a− ε)] dup < 0

If up ∂f∂up ≥ 0 for all z, then

∂G

∂b
= ∂

∂b

{ˆ b

b−δ

[ˆ a

a−ε
upf (up, uo) duo

]
dup

}
=
ˆ a

a−ε
bf (b, uo) duo−

ˆ a

a−ε
(b− δ) f (b− δ, uo) duo =

b

ˆ a

a−ε
[f (b, uo)− f (b− δ, uo)] duo + δ

ˆ a

a−ε
f (b− δ, uo) duo > 0

as we wanted to show. �

Proof of Proposition 5.4. For Sold,k−1 > Smax
old for some k ≤ τ−1, Proposition 5.3 implies

that p should have strong certainty that θ = new. Lemma C.3 also implies that,

Ezτ {rσd (hτ , zτ )Up (zτ )} ≥ Ez {rσd (hτ , zτ ) [Up (zτ )− cσd (hτ )]} ≥ 0 > up

Therefore, in any strong rationalizable history where p is strongly certain that θ = new, p
strictly prefers to trust. Since the repeated first best is a strong rationalizable continuation
strategy (since it maximizes both d and p’s utilities), and p will trust regardless of what
rationalizable commitment cost is chosen, θ = new will optimally choose cτ = 0 and play
her first best afterwards, regardless of her beliefs, as long as they are also consistent with
common strong certainty of rationality.

When Sold,k−1 ≤ Smax
old for all k ≤ τ−1, Lemma C.3 also implies that Vnew (Snew,τ−1, cτ ) ≥

0 > up. Therefore, the implementation restriction

V (hτ , cτ ) = min {Vold (Sold,τ−1, cτ ) ,Vnew (Snew,τ−1, cτ )} ≥ up

is satisfied if and only if Vold (Sold,τ−1, cτ ) ≥ up, proving the desired result.
To prove the monotonicity of Vold (Sold,τ−1, cτ ) with respect to cτ we use the characteri-

zation of the solution to program 5.16 in Proposition A.1. When Sold,τ−1 ≤ ŝ

Vold (Sold,τ−1, cτ ) =
ˆ
Uo>cτ+Sold,τ−1

Up (zτ ) f (zτ ) dz+ =
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+
ˆ
Uo∈(cτ−Sold,τ−1,cτ+Sold,τ−1)

min [0, Up (zτ )] f (z) dz = G
(
c+ U,U | U − s, U

)
+H

(
c,
U + U

2 | U − U2 , s

)
using the definitions in Lemma C.6, and hence it is decreasing in c, as we wanted to show. �

Lemma C.7. T as defined in 5.25 is a contraction mapping with modulus β

Proof. I use Blackwell’s conditions to show the result (see Theorem 3.3 in ?). We only need
to check monotonicity and discount. See that if g ≤ h then T (g) (s) ≤ T (h) (s) for all s,
since the integrand is an increasing operator. Moreover, T (g + a) (s) = T (g) (s) +βa for all
s, and hence T is a contraction mapping of module β, as we wanted to show. �

Proof of Proposition 6.1 . Define P (c) = Ez [|Uold − c|]. It can be expressed as

P (c) =
ˆ
z∈Z
|Uold − c| f (z) dz =

ˆ c

U
(c− u) fo (u) du+

ˆ U

c
(u− c) fo (u) du

where fo (u) :=
´ U
U f (Up, u) dUp denotes the partial of Uold. Using Leibniz rule

P ′ (c) := ∂P (c)
∂c

=
ˆ c

U
fo (u) du−

ˆ U

c
fo (u) du = Pr (Uold < c)− Pr (Uold > c)

so ∂P (c)
∂c > 0 ⇐⇒ Pr (Uold < c) ≥ Pr (Uold > c) or equivalently Pr (Uold < c) ≤ 1

2 . Then,
is easy to see that if condition 2 holds, then for all c ≥ c we get P ′ (c) > 0 and hence P is
increasing in c. Because c (·) ∈ [c, c∗0] for all s ∈ [0, Smax

old ] and is weakly decreasing in s, the
result holds. �

Proof of Lemma 6.1 . I present the proof for the case with s = 0, which corresponds to
the greatest commitment cost c∗0 ≥ c (s) for all s. For smaller commitment costs the proof
will be analogous. It follows from various steps:

Step 1 : max |Uold − c∗0| > Smax
old .

If this was not the case, then for all z, c∗0−Smax
old ≤ Uold ≤ c∗0 +Smax

old . If this was the case,
using Proposition A.1 we have that

V (hτ , c∗0) =
ˆ
z∈Z

min (0, Up) f (z) dz ≤
ˆ
z:Uold>0

UpdF (z) < uP

which violates the definition of c∗0
Step 2: min (Uold) = U < c∗0 − Smax

old < c∗0 < U = max
(
U
)

The right hand side inequality follows from the fact that if U ≤ c∗0 − Smax
old then

V (hτ , c∗0) = 0 > up

which will never hold for c∗0 (since θ = old can drive them to indifference by decreasing
the commitment cost enough). From step 1, we either must have that c∗0 − Smax

old > U or
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U > c∗0 +Smax
old (or both). Suppose that the result is not true, so thatU ≥ c∗0−Smax

old . Suppose
first that c∗0 − Smax

old < c. Then

(C.11) V (hτ , c∗0) =
ˆ
Uold>c

∗
0−S

max
old

min (0, Up) f (z) dz

=
ˆ
Uold∈(c∗0−Smax

old
,c)

min (0, Up) f (z) dz +
ˆ
Up>c

min (0, Up) f (z) dz ≤
ˆ
Up>c

min (0, Up) f (z) dz <
ˆ
Up>c

Upf (z) dz = up

violating the definition of c∗0. If c ≤ c∗0 − Smax
old then

V (hτ , c∗0) =
ˆ
Up>c∗0−S

max
old

min (0, Up) f (z) dz <
ˆ
Up>c∗0−S

max
old

Upf (z) dz <

<

ˆ
Up>c

Upf (z) dz = uP

from the definition of c (since it’s the minimum cost that achieves uP in the spot game).
Therefore, we have shown that if U ≤ c∗0 − Smax

old then we have V (hτ , c∗0) < up, violating the
definition of c∗0. Finally, to show c∗0 > U , suppose that U ≤ c∗0. Then any strategy consistent
with this choice would give the θ = old an utility of 0, while we know we will make the
reservation utility to be binding (i.e. choose the commitment cost a little smaller so that
the contrarian behavior is enough to reach the reservation utility).

Step 3 : Pr (Up > c∗0 − Smax
new , Uold < c∗0 − Smax

old ) > 0
Follows from the fact that U > c∗0 > c∗0 − Smax

new , Step 2 and the full support assumption.
Step 4: U > c∗0 + Smax

old

Suppose that this is not the case: then

V (hτ , c∗0) =
ˆ
Uold∈(c∗0−Smax

old
,c∗0+Smax

old )
min (0, Up) f (z) dz

but see that this is identical to expression C.11. Therefore, replicating the same proof as in
Step 2, we conclude the result.

Step 5: Pr (Up < c∗0 + Smax
new , Uold > c∗0 + Smax

old ) > 0
Since U < 0 we clearly have that U < c∗0 + Smax

new . This, together with the Step 5 and the
full support assumption proves the result. �

Proof of Lemma 6.2 . I first show that for any old−rationalizable history hτ we have
infβ∈(0,1) q (hτ , β) > 0. I present the proof for when c∗ (hτ ) = c∗0. Suppose not: then there
exists an increasing sequence βn ∈ (0, 1) such that q (hτ , βn) > 0∀n ∈ N and q (hτ , βn)↘ 0.
For all δ define the expected utility for the people v (βn) := V (hτ , c∗0) = up. For all n we
have:
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v (βn) <
ˆ
Uold∈(c∗0(βn)−Smax

old
(βn),c∗0(βn)+Smax

old
(βn))

min (0, Up) f (z) dz+q (hτ , βn)
[

max
UP∈[U,U]

(0, Up)
]

where the first term is the utility in the middle region, and the second term is the natural
bound on all regions (particularly in separation regions). Taking limits as n→∞ :

up = lim
n→∞

v (βn) ≤ E [min (0, Up)] < uP

reaching a contradiction. �

Appendix A. Characterization of V (s, c)

In this section I solve and analyze the solution to the programming problem in subsection
(5.20)

Proposition A.1 (Rationalizable Contrarian Strategy). Consider the programming
problem 5.20. Then

(1) We can rewrite it as

(A.1) V (s, c) = max
r(.),n(.)

Ez [Upr (z)]

(A.2) s.t :



Ez [(Uold − c) r (z) + n (z)] ≥ 1
β s+Wold (PK for sacrifice)

r (z) [Uold − c+ n (z)] ≥ 0 for all z ∈ Z (IC for r = 1)

[1− r (z)] [n (z)− Uold + c] ≥ 0 for all z ∈ Z (IC for r = 0)

n (z) ∈ [0, Smax
old ] for all z ∈ Z (Feasibility)

(2) There exist Ŝ ∈ (0, Smax
old )such that if for s < Ŝ then the solution policy r (z) is

(A.3) r (z) =



1 if Uold − c > Smax
old

1 if Uold − c ∈ (−Smax
old , S

max
old ) and Uold < 0

0 if Uold − c ∈ (−Smax
old , S

max
old )and Uold > 0

0 if Uold − c < −Smax
old

(3) If s ∈
[
Ŝ, Smax

old

]
, there exist a positive constant α (s) ∈ (0, 1) such that

(A.4) r̂ (z) =



1 if Uold − c > Smax
old

1 if Uold − c ∈ (−Smax
old , S

max
old ) and Up < γ (s) (Uold − c)

0 if Uold − c ∈ (−Smax
old , S

max
old )and Up > γ (s) (Uold − c)

0 if Uold − c < Smax
old

(4) For all s ∈ (0, Smax) we have c (s) ∈ (c, Smax)
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Proof. Define n (z) = β
1−β [w (z)−Wold]. If r (z) = 1 then we can rewrite the enforceability

constraint in 5.13 as (1− β) (Uold − c)+βw (z) ≥ βWold ⇐⇒ Uold−c+n (z) ≥ 0. Likewise,
if r (z) = 0 the IC constraint is βw (z) ≥ (1− β) (Uold − c)+βWold ⇐⇒ n (z)−Uold+c ≥ 0.
Finally, rewrite (PK) as

Ez [(1− β) (Uold − c) r (z) + β (w (z)−Wold)] ≥
(1− β

β

)
s+ (1− β)Wold ⇐⇒

Ez [(Uold − c) r (z) + n (z)] ≥ 1
β
s+Wold

See that for any z :|Uold − c| < Smax
old then any r ∈ {0, 1} is implementable. However, if

Uold > c+ Smax
old then only r = 1 is implementable, and if c− Uold < −Smax

old then only r = 0
is implementable. Then, without the promise keeping constraint (PK) the solution to A.1
is simple:

r (z) :=


1 if Uold > c+ Smax

old

1 if |Uold − c| < Smax
old , Up < 0

0 otherwise
i.e. whenever both policies r ∈ {0, 1} are rationalizable, θ = old picks the worst policy for
p. We will refer to this policy as the rationalizable contrarian policy. It will be also the
solution when s = 0 when the policy r satisfies (PK) with strict inequality. Define n (z) as
the implementing continuation for r (z) that maximizes E {((Uold − c) r (z) + n (z))}. Then,
it will be also the solution of A.1 if and only if

s ≤ βEz [(Uold − c) r (z) + n (z)]−Wold ≡ ŝ

showing (2). For (3), ignoring for now the IC constraints, use the Lagrangian method (?)

L =
ˆ
Upr (z) f (z) dz − γ

{ˆ
[(Uold − c) r (z) + n (z)]− 1

β
s−Wold

}
where γ ≥ 0 is the Lagrange multipliers of the problem.

∂L
∂r (z) = Up − γ (Uold − c)

then, if r (z) = 1 is implementable, the optimum will be r (z) = 1 ⇐⇒ Up ≤ γ (Uold − c).
If we want to implement r = 1 we then set n (z) = min {0, c− Up}. Then, given γ we solve
for r (z | γ) and n (z | γ), and we solve for γ using the promise keeping constraintˆ

[r (z | γ) (Uold − c) + n (z | γ)] f (z) = 1
β
s+Wold

which determines γ as a function of s, showing (3). �

Results are better explained using Figures (9) , (10) and (1) below.
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Figure 9. Rationalizable Evil Agent strategy, with s ≤ ŝ

See that for Uold above c + Smax
old and below c − Smax

old the unique rationalizable actions
for b are r̂ (z) = 1 (red) and r̂ (z) = 0 (green) respectively, as we have seen before. When
Uold ∈ (c− Smax

old , c+ Smax
old ), both r = 0 and r = 1 are rationalizable for any z in this region,

by appropriately choosing the expected continuation payoffs. Therefore, the worst strategy
that p could expect would be one of a contrarian: whenever p wants the green button to be
played (Up < 0), then the old type would play the opposite action. We can draw an obvious
parallelism to the “evil agent” in the robustness literature of ?, with the restriction that
instead of a pure evil agent, the rationalizable evil agent, that is only contrarian at states in
which the utility of doing her most desirable action is not too high.

See that being a rationalizable contrarian is costly for θ = old, since there are regions in
which both p′s and θ = old most desired action coincide, as we see in the next figure (regions
stressed in darker colors)
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Figure 10. Self-contrarian regions for rationalizable evil agent

Then, when sacrifice is high enough, the disutility generated by the dark regions would
not be consistent with the observed behavior. Therefore, to satisfy the “promise keeping”
constraint, we must allow the “rationalizable evil agent” not to be fully contrarian, and play
her desired action in some states, as we see in the figure below.
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Table 1. Rationalizable evil agent strategy, with s > ŝ

Finally, is easy to see that as the promise keeping constraint becomes more and more
binding, the worst type’s policy r̂ (.) resembles more and more the spot optimum policy
rspotold (.). Then, c (s) > c and it approximates it as the promise keeping constraint becomes
more binding.
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