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Abstract

This paper mainly concerns the the asymptotic properties of the BLOP matching estimator

introduced by Dı́az, Rau & Rivera (Forthcoming), showing that this estimator of the ATE attains

the standard limit properties, and that its conditional bias is Op(N�2/k), with k the dimension

of continuous covariates. Even though this estimator is not
p

N -consistent in general, when

the order of magnitude of the numbers of control units is bigger than the one of treated units,

we show that the BLOP matching estimator of ATT is
p

N -consistent. Finally, for a general

nonparametric setting, the conditional bias of matching estimators that use a constant number of

matches to perform the potential outcomes cannot attain the aforementioned stochastic orders,

regardless of the weighting schemes used to perform the potential outcomes. The proof of these

results uses novel contributions in the field of geometric probability theory we provide in this

work. Our results improve the obtained by Abadie & Imbens (2006) when studying the limit

properties of the well known NN -matching estimator.
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1 Introduction

Asymptotic properties of nonparametric matching estimators have been scarcely studied in the

program evaluation literature.1 As far as we know, the most general results were provided by

Abadie & Imbens (2006) when presenting, under general conditions, the limit properties of the

well-known NN -matching estimator. In particular, they show that this estimator for the ATE has

a conditional bias whose stochastic order is N1/k, with k the dimension of continuous covariates.

Indeed, by directly applying their results, and after adapting some notations, it can be shown that

the same asymptotic properties hold true for any matching estimator in which the missing potential

outcome –see Rosenbaum & Rubin (1983)– to be imputed to any unit that needs be matched is

defined as a weighted average of observed outcomes of a fixed number of its first nearest neighbors

having the opposite treatment, with weighting schemes for doing so depending on units or not.

This paper addresses the asymptotic properties of the BLOP matching estimators introduced

by Dı́az et al. (Forthcoming). These estimators are based on finding, for each unit that needs to

be matched, sets of observations in the opposite treatment group such that a convex combination

of them has the same covariate values as it, or minimizing the distance between them. Since

this optimization problem may have more than one solution in terms of weighting schemes, the

procedure that such scheme determine establishes a refinement criterion that looks for the set with

the closest covariates values to the unit that is being matched, which is done by choosing, from the

solutions, the one that minimizes the weighted sum of the norm of matching discrepancies to the

power of two.2 Therefore, the weighting schemes used to perform this estimator are dependent on

units, and the number of counterfactuals employed for this purpose is endogenously determined by

the method.

The main results of this paper are two. First, under practically the same conditions as those used

by Abadie & Imbens (2006), we show that the BLOP matching estimator of ATE attains standard

limit properties, and has a conditional bias that is Op(N�2/k). It is worth mentioning that this

1From Imbens & Wooldridge (2009), the matching estimators we are concerned with in this work perform the
potential outcome imputed to any unit that needs to be matched as a weighted sum of observed outcomes of a fixed
number of its nearest neighbors having the opposite treatment. Without loss of generality, weights for doing so can
be assumed to belong to the simplex of dimension of that number, a condition that avoids the potential outcomes
being out of range regarding the observed ones. This approach is applied for estimating the average treatment e↵ect,
ATE, the average treatment e↵ect on the treated, ATT, and/or any other estimator defined on sub-samples of units.

2In the presentation of their approach, Dı́az et al. (Forthcoming) consider the minimization of the weighted sum
of the norm of matching discrepancies instead of the squares of these distances. Hence, the refinement criterion here
assumed is directly derived from theirs, and can be implemented using the codes that they provide in that work. See
details in §2.2 below.
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order improves the order N1/k attained by the NN-matching estimator. In fact, Op(N�2/k) could

be attained by the NN -matching estimator in the only case in which the conditional expectation

of the outcome variable is a linear expression in covariates, a condition under which the conditional

bias of BLOP estimators reaches an arbitrary order –see Theorem 4.1 in §4–. Second, even though

the BLOP matching estimator of ATE is not
p

N -consistent, we show that if the number of control

units increases faster than the number of treated units, then the BLOP matching estimator of

the ATT attains the
p

N -consistency, as its bias rate is better than the one attained by the NN -

matching estimator.

An important aspect concerning the BLOP approach is that although the optimization problems

involved in its definition use the entire sample of counterfactuals to perform the missing potential

outcome, from Caratheodory’s Theorem –see Rockafellar (1972)– it follows that the number of

them that actively participate in the convex combination performing the covariates of the unit that

is being matched is, at most, k+1. We have, however, that these units are not necessarily the first

k+1 nearest neighbors to it. This “lack of control” with respect to the closeness of units employed

is precisely one of the fundamental di�culties we face when developing our results.3 Nevertheless,

we overcome this challenge by using some novel contributions in geometric probability theory we

develop.

Due to the nature of the BLOP matching estimator, an initial result we will need is the prob-

ability that a random vector does not belong to the convex hull of a certain number of nearest

neighbors. Using a property in Cover & Efron (1967), which extends a result in Wendel (1962),

Theorem 3.1 in §3.1 states that this probability can be bounded above by an expression that

converges exponentially to zero with the number of matches employed. This fact, along with the

nature of BLOP’s solution, will allow us to overcome the aforementioned lack of control.4 Note that

when the number of counterfactuals employed is fixed exogenously as in most standard matching

approaches –see Imbens & Wooldridge (2009)–, this probability is a constant value, hence the norm

3The limit properties presented by Dı́az et al. (Forthcoming) are for a restricted version of the BLOP matching
estimator, performed using a finite number of matches instead of the entire sample. Given that, it is not di�cult to
prove that this version of the BLOP estimator attains the same asymptotic properties as the NN -matching estimator.

4Under the standing assumptions here assumed, Theorem 5.4 in Evans, Jones & Schmidt (2002) states that the
↵-moments of the norm of the M -matching discrepancy can be bounded above by an expression that is polynomial

in M (with degree equal to ↵). Therefore, even for the “worst case” when the BLOP uses the farthest counterfactual
in the sample, the “exponential decreasing” of the probability overcomes the “polynomial increasing” of distances
between covariates, a result that leads us to conclude that the expected value of the balance of covariates reached by
the BLOP converges to zero exponentially with the size of the sample. Hence, the BLOP approach restores relevance
to the weighting scheme for the order obtained.
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of matching discrepancies, and therefore the balance in terms of covariates reached by the method,

become the relevant expressions defining the order of the conditional bias.

On the other hand, once the BLOP is solved, let us say, for a control unit, it is then defined a

random polytope5 that is given by the convex hull of covariates of treated units actively participating

in the BLOP’s solution for this control unit. Of course a treated unit participates in such realization

whenever it is a vertex of such polytope. In §3.2 we investigate the number of times that, in expected

value, a treated (control) unit is a vertex of the polytopes arising when the BLOP is solved for all

control (treated) units. Proposition 3.2 in that section states that, under general conditions, this

number can be bounded above by a constant that does not depend on the sample size. By using

this result, we are able to show the asymptotic normality and variance properties of the BLOP

estimators.

2 Preliminaries

2.1 Basic concepts, notation and standing assumptions

The binary program to be evaluated is represented by a random variable ⌦ = (W,Y,X), with

W 2 {0, 1} indicating whether a treatment was received (W = 1) or not (W = 0) by the individual

whose covariates or pretreatment characteristics is the vector X 2 X ✓ Rk. The observed outcome

is Y = W Y (1) + (1 � W )Y (0) 2 R, with Y (1) and Y (0) being the potential outcomes –see

Rosenbaum & Rubin (1983) and Rubin (1973)–. Given the above, the average treatment e↵ect,

ATE, of the program is6 ⌧ = E(Y (1) � Y (0)), while the average treatment e↵ect on the treated,

ATT, is ⌧tre = E(Y (1)�Y (0) |W = 1). Regarding these concepts, the following hypotheses are quite

standard in the program evaluation literature, and they will be part of our standing assumptions.7

Assumption 1. Regularity conditions: X is compact and convex, with unitary

Lebesgue measure in Rk; the density of X is bounded away from zero, with bounded

partial derivatives at each point of X.

Assumption 2. Unconfoundedness: W ?? ((Y (0), Y (1)) | X) .

5See Majumdar, Comtet & Randon-Furling (2010) for concepts and main properties of random polytopes.
6Throughout this paper, we denote the underlying probability by P and mathematical expectation by E.
7See Heckman, Ichimura & Todd (1998), Imbens & Wooldridge (2009) and Rosenbaum & Rubin (1983) for a

detailed discussion on them.
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Assumption 3. Overlap: there is c 2]0, 1[ such that 0 < P(W = 1 | X) < 1� c.

For x 2 X and w 2 {0, 1}, the conditional expectation and conditional variance of Y are,

respectively, µ(x,w) = E(Y | X = x,W = w) and �2(x,w) = V(Y | X = x,W = w). By

Assumptions 2 and 3, µ(x,w) coincides with µw(x) = E(Y (w) | X = x). These mappings are

relevant for the purposes of this paper, and the following regularity conditions will be assumed

throughout this work.

Assumption 4. Regularity of conditional mappings: for w 2 {0, 1}, µ(·, w), is

twice continuously di↵erentiable on X, and �2(·, ·) is uniformly bounded in X⇥ {0, 1}.

A sample of size N 2 N of ⌦ is denoted by ⌦N = {(Wi, Yi, Xi), i = 1, . . . , N}, and for this, N0

and N1 are the number of control and treated units, respectively. Of course, N = N0 + N1. We

make the convention here and through the rest of the paper that the control units are indexed by

1, ..., N0, so the treated ones are labeled as N0 + 1, ..., N0 +N1.

The following condition will be part of our standing assumptions as well.

Assumption 5. For each N 2 N, (Wi, Xi, Yi), i = 1, . . . , N , are independent draws

from the distribution of ⌦.

Remark 2.1. Instead of Assumption 1 , Abadie & Imbens (2006) assume that X is compact and

convex, and that the density of X is bounded and bounded away from zero. The remaining conditions

we need are the same as those considered for studying the asymptotic properties of the NN -matching

estimator.

Without loss of generality, in this paper we use the Euclidean norm, k·k, as the matching metric,

and we also assume that the matching is performed with replacement. Given that, borrowed from

Abadie & Imbens (2006), for i 2 {1, . . . , N} and m 2 N, m  N1�Wi , we set

jm(i) 2

8

>

<

>

:

{1, . . . , N0} if Wi = 1,

{N0 + 1, . . . , N} if Wi = 0,

as the index of the unit that is the mth nearest neighbor to unit i in the opposite treatment group.

For integer M , the convex hull of the first M matches to unit i will play a quite relevant role in
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this paper. This subset is denoted by

co

�

Xj1(i), . . . , XjM (i)

 

=

(

M
X

m=1

�mXjm(i), (�1, . . . ,�M ) 2 �M

)

,

with �M = {(�1, . . . ,�M ) 2 RM
+ , �1 + . . .+ �M = 1}, the Simplex of dimension M .

2.2 The BLOP matching estimator and some intuition behind the results

We begin this part with a simple reasoning that will serve to present the main contributions of this

work. All the formal aspects and the proofs are postponed to Sections 3 and 4 below.

From Imbens & Wooldridge (2009) we already know that most matching methods approximate

the unobserved (potential) outcome of a treated unit i 2 {N0 + 1, . . . , N}, namely Yi(0) = µ0(Xi)

ignoring error terms, by an expression of the form

bYi(0) =
M
X

m=1

⇠m Yjm(i),

where M is an exogenous number of matches employed, and (⇠1, . . . , ⇠M ) 2 �M the weighting

scheme used to perform the method.8 In view of standing assumptions, after performing a second

order Taylor expansion of Yjm(i) = µ1(Xjm(i)), m = 1, . . . ,M , around Xi, it is not di�cult to realize

that there are constants L1, L2 > 0, the upper bounds of derivatives of µ1 onto X, such that the

unit-level bias can be approximated as

�

�

�

bYi(0)� Yi(0)
�

�

�

⇠ L1

�

�

�

�

�

Xi �

M
X

m=1

⇠mXjm(i)

�

�

�

�

�

+ L2

M
X

m=1

⇠mkXi �Xjm(i)k
2, (1)

its stochastic order thus depending on the order of the norm of matching discrepancies, and par-

ticularly from the balance in terms of covariates reached by the method. From Lemma 2 in Abadie

& Imbens (2006),9 it follows that the stochastic order of the unit-level conditional bias is N
1/k
0 ,

since the order of the balance term in (1) dominates the order of the quadratic part of it, which

is N
2/k
0 by that Lemma. This property is the key ingredient used by Abadie & Imbens (2006) to

8The value of M is usually left to the researchers’ criterion, and the manner that one defines the weighting schemes
leading to the di↵erent matching methods currently available. For instance, the NN -matching estimator considers
⇠m = 1/M, m = 1, . . . ,M , while for Kernel-based methods it is assumed that ⇠m = K(1/kXi �Xjm(i)k), with K(·)
a given kernel function –see Heckman et al. (1998)–.

9Under the assumptions mentioned in Remark 2.1, this result states that the ↵-moment of kXi � Xjm(i)k is

O(N�↵/k), m = 1, . . . ,M . To this result holds, a key condition is that M is a constant.
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prove that the stochastic order of the conditional bias of the NN -matching estimator is N1/k. In

fact, by following their proofs, it is an easy matter to verify that this result is also attained by

any matching estimator for which the number of matches employed is fixed exogenously, and the

weighting schemes belong to the simplex of dimension equals to that number. This result certainly

enhances their contributions.

Another consequence of approximation in (1) is that, for general nonparametric settings, the

conditional bias of any matching method that uses a fixed number of matches should be, at most,

O(N�2/k). Moreover, even if this number increases with the sample size, say M = N0 in the case

of a treated unit being matched, it could occur that the order obtained by the conditional bias

could be worse than the one obtained using a constant number of matches. For instance, in case

M = N0, since the NN -matching estimator, with probability one, uses all the counterfactuals to

perform the potential outcomes, the fact that kXi �XN0k tends to the diameter of the supporting

set of covariates when the sample size tends to infinity, is certainly a drawback for the purposes of

improving the order of its conditional bias by using that number of matches.

With the aim of reaching the order N2/k for the conditional bias, we could initially be naturally

tempted to employ weighting schemes that minimize the right-hand side of the expression in (1),

an approach that becomes pointless due to the fact that the constants involved in that expression

are unknown. Given that, instead of attempting the minimization of that expression as a whole,

Dı́az et al. (Forthcoming) propose an approximated solution which, first of all, seeks the weighting

schemes that minimize the covariates balance reached by the method and, once this optimization

problem has been solved, they propose a second optimization problem to find the solution that

minimizes the quadratic part of the approximation in (1). In order to achieve the best possible

balance, they propose that the first problem should be solved using the entire sample of counter-

factuals instead of a fixed number of matches as for standard approaches. Formally, for a treated

unit i 2 {N0 + 1, . . . , N}, the first optimization problem they propose is

Fi : min
(⇠1,...,⇠N0 )2�N0

�

�

�

�

�

Xi �

N0
X

m=1

⇠mXm

�

�

�

�

�

,

whose solution set is denoted by argmin{Fi}. Given that set, the second optimization problem
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that yields the weighting scheme to be employed by the BLOP approach they introduce is

Si : min
(�1,...,�N0 )2 argmin{Fi}

N0
X

m=1

�m kXi �Xmk

2. (2)

After properly configuring the problems above in terms of involving covariates for control units,

the weighting scheme that solves problem Si for any unit i is denoted as10

�i = (�i1, . . . ,�
i
N1�Wi

) 2 �N1�Wi
,

and therefore, the potential outcome imputed to this unit according to that approach is

bY b
i (0) = (1�Wi)Yi +Wi

N0
X

m=1

�im Ym, bY b
i (1) = WiYi + (1�Wi)

N1
X

m=1

�im Ym+N0 .

Hence, the BLOP matching estimator of the ATE and ATT, denoted b⌧ b and b⌧ btre respectively,

are given by

b⌧ b =
1

N

N
X

i=1

⇣

bY b
i (1)� bY b

i (0)
⌘

, b⌧ btre =
1

N1

N
X

i=1

Wi

⇣

bY b
i (1)� bY b

i (0)
⌘

. (3)

From a geometric point of view, the problem Fi for a treated unit i 2 {N0+1, . . . , N} concerns

the weighting schemes that serve to perform the projection11 of Xi onto the convex hull of covariates

of control units, co{X1, . . . , XN0}. The fact that the BLOP approach considers the entire sample

of control units to perform that projection does not imply that all of them are finally employed to

build that point. Indeed, a vector Xm, m 2 {1, . . . , N0}, participates actively in the construction

of that projection when �im > 0, and from Caratheodory’s Theorem –see Rockafellar (1972)–, we

already know that their number should be, at most, k+ 1. It is worth mentioning that these units

are not necessarily the k + 1 first nearest neighbors to unit i, otherwise the limit properties of the

BLOP matching estimators can be readily obtained from arguments employed in Abadie & Imbens

(2006). These units are determined endogenously by the BLOP approach.

The “lack of control” regarding the closeness of units that participate in the realization of Xi

10From well known convexity properties –see Rockafellar (1972)–, argmin{Fi} is a nonempty, convex and compact
subset, thus the optimization problem Si has always a solution. In fact, because we consider only continues covariates,
without loss of generality we may assume that this problem has a unique solution.

11We recall the projection of X 2 Rk onto a convex set C is the vector that solves minc2C kX � ck.
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by the BLOP approach is precisely the main di�culty we face for showing our results. In fact, that

issue implies that we cannot use aforementioned Lemma 2 to obtain the order of the conditional bias

of this estimator. In order to overcome this fundamental di�culty, denoting the value of problem

Fi for a treated unit i by

⌫{Fi} =

�

�

�

�

�

Xi �

N0
X

m=1

�imXm

�

�

�

�

�

, (4)

conditional on the sample, we have that the expected value of the balance reached by the BLOP

method for this unit complies with

E
�

⌫{Fi} |Wi = 1, {X◆,W◆}
N
◆=1

�

= ⌫{Fi} P(⌫{Fi} 6= 0). (5)

When the sample size increases, it is clear that ⌫{Fi} converges to zero. In fact, since that

expression can be bounded above by kXi�Xj1(i)k, we have that, in the extreme, it can be assumed

to be O(N�1/k). This result therefore gives relevance to the above probability for the order of

that expectation. In this regard, we first note that ⌫{Fi} 6= 0 is equivalent to saying that Xi /2

co{X1, . . . , XN0}. Hence, under the standing assumption, a fundamental result for our purposes,

which we show in §3.1, states that this probability can be bounded above by an expression that

goes to zero exponentially in the number of control units. Therefore, regardless of the units that

are used when solving the optimization problem Fi, the conditional expected value in (5) attains

an arbitrary order of convergence, implying that the order of the conditional bias of the BLOP

matching estimator is dominated by the order of expectation of the value of the optimization

problem Si, namely ⌫{Si}, which for the treated unit i is given by

⌫{Si} =
N0
X

m=1

�im kXi �Xmk

2. (6)

Of course, the aforementioned lack of control once again implies that we cannot use Lemma 2

in Abadie & Imbens (2006) to obtain the order of the conditional bias of b⌧ b. The techniques we

use to conclude the proofs are developed in §4.

Finally, with the aim of studying the variance and asymptotic normality properties of the

BLOP matching estimators, the aforementioned lack of control is, of course, the main issue we

must overcome in order to obtain its standard limit properties. In this regard, and similarly to
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Abadie & Imbens (2006), the fundamental question to be addressed concerns the number of times,

on average, that a certain unit was used as a match by the entire sample of its opposites after solving

the optimization problem (2). The main result in §3.2 states that this number can be bounded

above by a constant. Given that result, the limit properties of the BLOP matching estimator that

remain to be completed follow directly from corresponding results in Abadie & Imbens (2006) for

the NN -matching estimator.

3 Some results in geometric probability theory

3.1 The probability of not being in the convex hull of the nearest neighbors

The purpose of this part is to obtain a proper upper bound for the probability that Xi does not

belong to the convex hull of covariates of its first M nearest neighbors in the opposite treatment

group,

P(Xi /2 co{Xj1(i), . . . , XjM (i)}) = P(0k /2 co {U1,i, . . . , UM,i}), (7)

where Um,i = Xi �Xjm(i) is the mth matching discrepancy, m = 1, . . . ,M .

Following Cover & Efron (1967) we say that a set of random vectors {⇠1, . . . , ⇠M} in Rk, with

M > k, is in general position if, with probability one, every k-elements subset is linearly inde-

pendent. From that work (see page 218), we have that this property holds when these vectors

are “selected independently according to a distribution absolutely continuous with respect to natural

Lebesgue measure”. Hence, from Assumptions 1, 2, 3 and 5, it is not di�cult to show that the

subset of covariates {X1, . . . , XN} is in general position. Besides, it is also clear that any M -subset

of {X1, . . . , XN}, with M > k, is in general position as well, and that this property remains valid

under translation. All of these facts imply that for a large enough N , i 2 {1, . . . , N} and M > k,

{U1,i, . . . , UM,i} is in general position.

A remarkable result in Wendel (1962), slightly extended by Cover & Efron (1967), says that

if the set of random vectors {⇠1, . . . , ⇠M} of Rk, with M > k, is in general position, and the joint

distribution of them is invariant under reflections through the origin,12 then the probability of a

12That is, for any subset A1, . . . , AM of Rk, P(�1Z1 2 A1, . . . , �MZM 2 AM ) has the same value for all 2M choices
of �i = ±1, i = 1, . . . ,M .
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half-space containing that set of vectors existing is equal to

1

2M�1

k�1
X

s=0

✓

M � 1

s

◆

=
1

2M�1

k�1
X

s=0

(M � 1)!

s! (M � 1� s)!
.

From the fact that the convex hull of {⇠1, . . . , ⇠M} is the intersection of all half-spaces containing

that set of vectors, and after bounding the factorial terms in last relation, it is not di�cult to

conclude that there is a constant ✓ such that

P (0k /2 co{⇠1, . . . , ⇠M})  ✓
Mk

2M
.

The last inequality cannot be directly applied for upper bounding the probability in (7), since

even though the set of matching discrepancies {U1,i, . . . , UM,i} is in general position, the joint

distribution of them could be far from being invariant under reflections through the origin. However,

the following technical result helps us to overcome this drawback.

Proposition 3.1. If Assumptions 1 holds, then the joint distribution of the first M matching

discrepancies can be bounded above by a strictly positive mapping, which properly re-scaled by a

constant yields a distribution function that is invariant under reflections through the origin.

Proof. Following Abadie & Imbens (2006), from a sample of {Xj}
N
j=1 ⇢ Rk, we have the probability

that Xi = x is the mth closest match of z is given by

fjm(x) = N

✓

N � 1

m� 1

◆

f(x) (1� P (||X � z||  ||x� z||))N�m (P (||X � z||  ||x� z||))m�1 ,

where f(·) is the density function of covariates. Denoting F (x) = P(||X � z||  ||x � z||), the

conditional distribution of Xs = x̃ being the rth closest match of z, given that Xjm = x for r > m,

is the same as the distribution of the (r �m)th closest match of z obtained from a sample of size

N �m from a population whose distribution is simply F (·) truncated on the left at x, the latter

given by the following expression:

f jm
jr

(x̃ |x) =
fjm,jr(x, x̃)

fjm(x)

= (N �m)

✓

N �m� 1

r �m� 1

◆

f(x̃)

(1� F (x))

✓

F (x̃)� F (x)

1� F (x)

◆r�m�1✓1� F (x̃)

1� F (x)

◆N�r

.

Thus, the joint distribution of probability that Xi = x and Xs = x̃ are the mth and rth (r > m)
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nearest neighbors of z respectively is:

fjm,jr(x, x̃) =
N !

(m� 1)!(r �m� 1)!(N � r)!
f(x)f(x̃) (F (x̃)� F (x))r�m�1 (1� F (x̃))N�r .

Hence, by following the above arguments and performing some calculus, denoting x = (xj1 , . . . , xjM )

we can show that the joint distribution of the first M closest matches is:

fj1,...,jM (x) =
N !

(N �M)!

 

M
Y

s=1

f(xjs)

!

(1� F (xjM ))N�M ,

which after transforming to the matching discrepancy, Um = Xjm�z, and denoting u = (uj1 , . . . , ujM ),

we can conclude the following relation:

fj1,...,jM (u) =
N !

(N �M)!

 

M
Y

s=1

f(z + ujs)

!

(1� P(||X � z||  ||ujM ||))N�M .

Finally, denoting Vm = N1/kUm, and v = (vj1 , . . . , vjM ), we have that

fj1,...,jM (v) =
N !N�M

(N �M)!

 

M
Y

s=1

f
⇣

z +
vjs
N1/k

⌘

!

✓

1� P
✓

||X � z|| 
||vjM ||

N1/k

◆◆N�M

, (8)

from which we can readily conclude the following inequality13

fj1,...,jM (v)  f̄Mexp

 

�f
¯

||vjM ||

k

(M + 1)

⇡k/2

�(1 + k/2)

!

, (9)

where 0 < f
¯
< f̄ < 1 are the lower and upper bounds of the distribution f(·), respectively. Using

the right term in (9) we can define the distribution as stated.

Remark 3.1. Using (8) it can be shown that the joint distribution of the first M nearest neighbors

converges to the following distribution, which indeed is invariant under reflections through the

origin:

lim
N!1

fj1,...,jM (v) = f(z)Mexp

 

�||vjM ||

k f(z)
⇡k/2

�(1 + k/2)

!

.

The following result comes directly from the properties presented above.

13Here we use the fact that for N > M , N�M
N �

1
M+1 .
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Theorem 3.1. If Assumptions 1, 2, 3, and 5 hold, for a large enough N , i 2 {1, . . . , N} and

M > k, there is a constant � > 0 such that

P(Xi /2 co{Xj1(i), . . . , XjM (i)})  �
Mk

2M
.

Remark 3.2. What Theorem 3.1 states is that the probability of not being in the convex hull of

the first M nearest neighbors is bounded above by a term that goes to zero exponentially in M . The

constant � in that relation comes from the unknown distribution function in Proposition 3.1. From

this theorem, it is also clear that, given the sample, for each treated unit i (and similar for controls)

we have that:

P(Xi /2 co{X1, . . . , XN0})  �
Nk

0

2N0
.

3.2 The number of times that a unit is used as a match by the BLOPs

For a control unit j 2 {1, . . . , N0}, after solving the optimization problem Sj , the vector of co-

variates of a treated unit i 2 {N0 + 1, . . . , N} participates in the convex combination perform-

ing Xj (or its projection onto co{XN0+1, . . . , XN}) whenever �ji�N0
> 0.14 From a geomet-

ric point of view, this means that vector Xi is a vertex of the polytope defined by the con-

vex hull of covariates of treated units associated with the solution of problem Sj , whose set

of indexes is Mj =
n

i0 2 {N0 + 1, . . . , N}, �ji0�N0
> 0
o

. For the case that j is a treated unit,

Mj =
n

i0 2 {1, . . . , N0}, �
j
i0 > 0

o

, and given that, the number of times that a unit i, either control

or treated, is a vertex of such polytopes is

T (i) = Wi

N0
X

j=1

1{i 2 Mj}+ (1�Wi)
N1
X

j=1

1{i 2 Mj},

where 1{·} is the indicator function, which is equal to 1 if the argument is true and 0 otherwise.

The corresponding sum of weights associated with unit i is given by

K(i) = Wi

N0
X

j=1

�ji�N0
+ (1�Wi)

N1
X

j=1

�N0+j
i .

14We have that the components of vector �j are �j
1, . . . ,�

j
N1

, thus a treated unit i 2 {N0 + 1, . . . , N0 + N1} is

associated with �j
N0�i.

13



The following result will be quite relevant when we study the properties of the variance of the

BLOP matching estimator in §4.2. Roughly speaking, it states that the sum (to the power of any

integer) of the weights associated with the unit i when it was used as a counterfactual individual

when performing the BLOP matching estimator is a constant, on average.

Proposition 3.2. If Assumptions 1, 2, 3, and 5 hold, then for each unit i and integer ↵,

E ((K(i))↵) is bounded uniformly in N .

Proof. Assume for a while that ↵ = 1, and without loss of generality, the proof is performed for a

treated unit i1 2 {N0 + 1, . . . , N}. In that case, for the sake of simplicity regarding notation, for a

control unit j and i 2 {N0+1, . . . , N}, we set �ji ⌘ �ji�N0
. Since K(i1)  T (i1), it is clear that the

following inequality holds:

E (K(i1))  E

0

@

N0
X

j=1

1{i1 2 Mj}

1

A ,

and from the fact {1{i 2 Mj}, j 2 {1, . . . , N0}, i 2 {N0 + 1, . . . , N}} are identically distributed,

we can readily conclude that for any treated unit i and a control j,

E (K(i1))  N0 P(i 2 Mj). (10)

Denoting by C1 = co{XN0+1, . . . , XN}, the convex hull of covariates of the entire sample of

treated units, from standard decomposition of P(i 2 Mj) using the “belonging to set C1” as the

conditional event, we have that

P(i 2 Mj) = P(i 2 Mj |Xj 2 C1)P(Xj 2 C1) + P(i 2 Mj |Xj /2 C1)P(Xj /2 C1),

and by Theorem 3.1,

P(i 2 Mj)  P(i 2 Mj |Xj 2 C1)P(Xj 2 C1) + �
Nk

1

2N1
. (11)

Conditional on {Xj 2 C1}, let Mj the subset of indexes of treated units that are associated

with the minimum number of nearest neighbors to unit j that are necessary to build Xj (or

its projection as the case may be) as a convex combination of their covariates.15 Hence, since

15If this number is m, then Mj = {j1(j), . . . , jm(j)}, and for each m < m, Xj /2 Cj(m) and Xj 2 Cj(m).

14



P (i 2 Mj |Xj 2 C1) = P (i 2 Mj |Xj 2 C1) , and partitioning the event {Xj 2 C1} into subevents16

{Xj 2 �Cj(m)} = {Xj 2 Cj(m) \ Cj(m� 1)}, m = 2, . . . , N1, it follows that17

P (i 2 Mj |Xj 2 C1) =
N1
X

m=2

P (i 2 Mj |Xj 2 �Cj(m)) P (Xj 2 �Cj(m)) .

Using the identical distribution of the aforementioned random variables,

N1
X

i=1

P(i 2 Mj |Xj 2 �Cj(m)) = N1 P(i 2 Mj |Xj 2 �Cj(m)), (12)

and the fact that P(i 2 Mj |Xj 2 �Cj(m)) = E (1{i 2 Mj} |Xj 2 �Cj(m)) , implies18

P(i 2 Mj |Xj 2 �Cj(m)) =
m

N1
. (13)

Thus, the combination of (12) and (13) yields

P(i 2 Mj |Xj 2 C1) =
1

N1

N1
X

m=2

mP(Xj 2 �Cj(m)),

and by Theorem 3.1,

P(i 2 Mj |Xj 2 C1) 

k
X

m=2

m

N1
+

N1
X

m=k+1

� mk+1

2mN1


�2
N1

,

for some constant �2 > 0. This last inequality along with relations (10) and (11) give

E (K(i1))  N0

✓

�2
N1

+ �
Nk

1

2N1

◆

,

and therefore, using the well known Cherno↵’s inequality, we obtain the result for the case ↵ = 1,

i.e., there is a constant 1 such that E (K(i1))  1. For the case ↵ = 2, we first notice that for

j, j0 2 {1, . . . , N0}, j 6= j0, using the convention above regarding the weighting scheme, Assumption

5 implies that �ji1 and �j
0

i1
are independent random variables. Given that, after doing some simple

16The set-di↵erence between A and B is denoted by A \B = {c 2 A, c /2 B}.
17Xj 2 �Cj(m) corresponds to say that this vector belongs to the convex hull of its m nearest neighbors and does

not belong to the convex hull of its m� 1 nearest neighbors.
18Here we use the fact that

PN1
i=1 E (1{i 2 Mj} |Xj 2 �Cj(m)) = m.

15



algebra,

(K(i1))
2
 K(i1) + 2

N0
X

j0=1,j0 6=j

�j
0

i1

N0
X

j=1

�ji1 ,

and then, by taking expectation and using the independence condition mentioned above, it follows

that

E(K(i1))
2
 1 + 21 E

0

@

N0
X

j0=1,j0 6=j

�j
0

i1

1

A

 1 + 221.

The proof for any ↵ > 2 comes readily using an inductive argument.

4 Asymptotic properties of the BLOP matching estimator

Before going into details regarding limit properties, it is worth presenting a breakdown of the bias of

the BLOP matching estimator, which is a useful tool to understand what variables play a relevant

role in determining the results in this work. By following Abadie & Imbens (2006), and doing some

algebra, it can be shown that b⌧ b � ⌧ = Ab + Eb +Bb, where

Ab =
1

N

N
X

i=1

(µ1(Xi)� µ0(Xi))� ⌧, Eb =
1

N

N
X

i=1

(2Wi � 1) (1 +K(i)) ✏i, (14)

with ✏i = Yi � µWi(Xi), i = 1, . . . , N , and Bb is the bias of b⌧ b, conditional on {(Wi, Xi)}Ni=1, which

after some calculus is given by:

Bb =
1

N

0

@

N0
X

i=1

N1
X

m=1

�im(µ1(Xm+N0)� µ1(Xi)) +
N
X

i=1+N0

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

1

A . (15)

Note that after taking expectation to b⌧ b � ⌧ , the only term that survives is Bb, so the order of

the bias is dominated by the order of this term, which, as we shall see, depends on the order of the

unit-level conditional bias.

In a manner similar to the approximation performed in (1), for a treated unit i 2 {N0 +

1, . . . , N}, after performing a second order Taylor expansion of µ0 around Xi –which is possible

under Assumption 4–, in view of Assumption 1 we have that the absolute value of its unit-level

16



conditional bias attains the next inequality –see (4) and (6)–:

�

�

�

�

�

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

�

�

�

�

�

 L1 ⌫{Fi}+ L2 ⌫{Si}+O

 

N0
X

m=1

�imkXi �Xmk

3

!

, (16)

where constants L1 and L2 are the upper bounds, over X, of the first and second derivatives of

that mapping. It is clear that inequality (16) can be built to the unit-level conditional bias of any

control unit, where µ0 has to be replaced by µ1, and the covariates values of optimization problems

need to be well configured (the constants can be assumed to be the same).

4.1 The order of the conditional bias

The following property is the key result in this part.

Proposition 4.1. If Assumptions 1 – 5 hold, then

E
 

�

�

�

�

�

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

�

�

�

�

�

�

�

�

Wi = 1, Xi, {Wj , Xj}
N
j=1

!

= O
⇣

N
�2/k
0

⌘

. (17)

and

E
 

�

�

�

�

�

N1
X

m=1

�im(µ1(Xm+N0)� µ1(Xi))

�

�

�

�

�

�

�

�

Wi = 0, Xi, {Wj , Xj}
N
j=1

!

= O
⇣

N
�2/k
1

⌘

. (18)

Proof. Without loss of generality, the proof is performed for the relation in (17). For a treated unit

i, the conditionals in (17) is denoted by ✓i = {Wi = 1, Xi, {Wj , Xj}
N
j=1}, and for m  N0, we set

Ci(m) = co{Xj1(i), . . . , Xjm(i)}.

For the case m = N0 we have that Ci(N0) = co{X1, . . . , XN0}, which does not depend on the unit

i, thus this set denoted as C0. We also denote qi(m) = P(Xi /2 Ci(m)), and let pi(m) = 1� qi(m).

Hence, ignoring the order term in right-hand side of (16) for a while, we are now concerned with

the study of  i = E
⇣

L1 ⌫{Fi}+ L2 ⌫{Si}

�

�

�

✓i

⌘

, which obviously can be written as

 i = E
⇣

 i

�

�

�

Xi /2 C0

⌘

qi(N0) + E
⇣

 i

�

�

�

Xi 2 C0

⌘

pi(N0).

Denoting the diameter of X by � > 0, pursuant to Theorem 3.1,

E
⇣

 i

�

�

�

Xi /2 C0

⌘

qi(N0) 

�

L1 � + L2 (k + 1) �2
�

�
Nk

0

2N0
,

17



and then,

E
⇣

N
2/k
0  i

�

�

�

Xi /2 C0

⌘

qi(N0) = o(1). (19)

On the other hand, it is clear that E
⇣

 i

�

�

�

Xi 2 C0

⌘

= E
⇣

L2 ⌫{Si}

�

�

�

✓i, Xi 2 C0

⌘

. Hence, after

partitioning the event {Xi 2 C0} into the events

{Xi 2 �Ci(m)} = {Xi 2 Ci(m) \ Ci(m� 1)}, m = 2, . . . , N0,

each one of them having a probability of occurrence of pi(m)qi(m� 1), which indeed is less than

or equal to qi(m� 1), it follows that

E
⇣

 i

�

�

�

Xi 2 C0

⌘

pi(N0) 

N0
X

m=2

E
⇣

L2 ⌫{Si}

�

�

�

✓i, Xi 2 �Ci(m)
⌘

qi(m� 1). (20)

For m  N0, notice that when Xi 2 �Ci(m), then there is a vector (⇠1, . . . , ⇠m) 2 �m such that

Xi =
Pm

s=1 ⇠sXjs(i), which, by definition of problem Si, implies that

⌫{Si} =
N0
X

s=1

�is kXi �Xsk
2


m
X

s=1

⇠s kXi �Xjs(i)k
2
 kXi �Xjm(i)k

2.

On the other hand, when m > k, Theorem 3.1 implies that qi(m � 1)  � mk

2m . All of this in (20)

give

E
⇣

 i

�

�

�

Xi 2 C0

⌘

pi(N0) 

k
X

m=2

E
�

L2 kXi �Xjm(i)k
2
| ✓i, Xi 2 �Ci(m)

�

+

N0
X

m=k+1

E
�

L2 kXi �Xjm(i)k
2
| ✓i, Xi 2 �Ci(m)

�

2�
mk

2m
. (21)

Now, in view of standing assumptions, Theorem 5.4 in Evans et al. (2002) implies that for a

large enough N , and therefore N0 from Assumptions 2 and 3,

E
⇣

N
2/k
0 kXi �Xjm(i)k

2
⌘

= ⌘1
�(m+ 2/k)

�(m)
+O

 

1

N
1/k�⇢
0

!

, (22)

for some constant ⌘1 > 0, ⇢ 2]0, 1/k[, and m  N0. Moreover, from relations (5.36) and (5.44) in

Evans et al. (2002) –see pag. 2848 –, the order expression in the right-hand side of (22) does not

18



depend on m, which implies that it can be bounded above by some constant. Hence, using the

following straightforward inequalities

�(m+ 2/k)

�(m)


�(m+ 2)

�(m)
 ⌘2m

2,

for some ⌘2 > 0, it follows that for unit i, a large enough N and m  N0,

E
⇣

N
2/k
0 kXi �Xjm(i)k

2
⌘

 ⌘3m
2 (23)

for some constant ⌘3 > 0. Applying (23) to the right-hand side in (21) yields

E
⇣

 i

�

�

�

Xi 2 C0

⌘

pi(N0) 

⌘3 L2

N
2/k
0

 

k
X

m=2

m2 + 2 �
N0
X

m=k+1

m2+k

2m

!



C

N
2/k
0

for some constant C. This last inequality along with (19) implies the result for the order of  i.

The remaining to conclude is straightforward from the results just presented.

Corollary 4.1. If Assumptions 1 – 5 hold and µw(·), w = 0, 1, is flat over X, then Bb = op(N��)

for any integer � > 0.

E
 

�

�

�

�

�

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

�

�

�

�

�

�

�

�

Wi = 1, Xi, {Wj , Xj}
N
j=1

!

= o
⇣

N��
0

⌘

.

and

E
 

�

�

�

�

�

N1
X

m=1

�im(µ1(Xm+N0)� µ1(Xi))

�

�

�

�

�

�

�

�

Wi = 0, Xi, {Wj , Xj}
N
j=1

!

= o
⇣

N��
1

⌘

.

Proof. This result is straightforward from Proposition 4.1, since in this case it holds that only the

linear term of Taylor’s expansion of µw(·), expression (16), is di↵erent from zero.

The following result is directly from Proposition 4.1 and Corollary 4.1.

Theorem 4.1. If Assumptions 1 – 5 hold, then Bb = Op(N�2/k). In addition, if µw(·), w = 0, 1,

is flat over X, then Bb = op(N��) for any integer � > 0.
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Proof. For the first part of the Theorem we have that after developing (15), we have

E
⇣

N2/k
|Bb

|

⌘

 E
 

N2/k

N

N0
X

i=1

E
 

�

�

�

�

�

N1
X

m=1

�im (µ1(Xm+N0)� µ1(Xi))

�

�

�

�

�

�

�

�

�

Xi, {Wj , Xj}
N
j=1

!!

+

E

0

@

N2/k

N

N
X

i=N0+1

E
 

�

�

�

�

�

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

�

�

�

�

�

�

�

�

�

Xi, {Wj , Xj}
N
j=1

!

1

A ,

and by Proposition 4.1, and doing some algebra, there is a constant % such that

E
⇣

N2/k
|Bb

|

⌘

 %E
 

✓

N

N1

◆2/k ✓N0

N

◆

+

✓

N

N0

◆2/k ✓N1

N

◆

!

.

The proof concludes after using Cherno↵ and Markov’s inequalities in the last relation. The

second part of this Theorem is direct by using Corollary 4.1.

We end this part studying some additional properties concerning the BLOP matching estimator

of the ATT, which from (3) is

b⌧ btre =
1

N1

N
X

i=N0+1

⇣

bY b
i (1)� bY b

i (0)
⌘

.

After performing some simple algebra, we can show that the conditional bias of this estimator

is given by

Bb
tre =

1

N1

0

@

N
X

i=N0+1

N0
X

m=1

�im(µ0(Xi)� µ0(Xm))

1

A .

For this estimator, the following assumption will replace Assumption 5 we have used for studying

the limit properties of the BLOP matching estimator of the ATE.

Assumption 6. Conditional on Wi = w, the sample consists of independent draws

from Y,X|W = w for w = 0, 1, and for some r > 1,

N r
1

N0
! ✓ < 1. (24)

The following result is straightforward using the properties above.
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Corollary 4.2. If Assumptions 1 – 4 and 6 hold, then Bb
tre = Op

⇣

N
�2r/k
1

⌘

. In addition, if µ0(·)

is flat over X, then Bb
tre = op(N

��
1 ) for any integer � > 0.

Proof. In view of Assumption 6 we can apply Proposition 4.1 to conclude Bb
tre = Op(N

�2/k
0 ).

Hence, using (24) we can readily obtain the result. The remainder of this property is direct after

using Corollary 4.1.

4.2 Variance, consistency, and normality properties

Proposition 3.2 is the most relevant result we need for obtaining the variance and asymptotic

normality properties of both b⌧ b and b⌧ btre. Hence, the proofs and partial results we show below

basically follow the arguments provided by Abadie & Imbens (2006) when studying such properties

for the NN -matching estimator.

After performing some simple calculus, we can show that the variance of b⌧ b, conditional on

{Xi,Wi}
N
i=1, is given by

V
⇣

b⌧ b
�

�

{Xi,Wi}
N
i=1

⌘

=
1

N2

N
X

i=1

(1 +K(i))2 �2(Xi,Wi), (25)

while for b⌧ btre it is

V
⇣

b⌧ btre
�

�

{Xi,Wi}
N
i=1

⌘

=
1

N2
1

N
X

i=1

(Wi � (1�Wi)K(i))2 �2(Xi,Wi). (26)

In the following, the normalized conditional variance of b⌧ b and the variance of the conditional

mean are denoted, respectively, by

V CV = N V
⇣

b⌧ b | {(Wi, Xi)}
N
i=1

⌘

, V CM = E
�

(µ1(X)� µ0(X)� ⌧)2
�

,

and for b⌧ btre these concepts are denoted by

V CV
tre = N1V

⇣

b⌧ btre | {(Wi, Xi)}
N
i=1

⌘

, V CM
tre = E

�

(µ1(X)� µ0(X)� ⌧tre)
2
�

�W = 1
�

.

Lemma 4.1. If Assumptions 1 – 5 hold , then E
�

V CV
�

= O(1). If Assumptions 1 – 4 and 6 hold,
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then
N0

N1
E
�

V CV
tre

�

= O(1).

Proof. For the first part, using (25), the proof is direct from Assumption 4 and Proposition 3.2.

For the second part, the argument is the same, but using (26).

The following technical condition is needed for the result below.

Assumption 7. For w 2 {0, 1}, �2(·, w) is Lipschitz in X and bounded away from zero,

the fourth-moment of Y (w) are uniformly bounded in X.

Proposition 4.2. Suppose Assumptions 1 – 5 and 7 hold, then b⌧ b
P

�! ⌧ and

p

N
�

b⌧ b � ⌧ �Bb
�

p

V CV + V CM

D
�! N (0, 1).

Suppose Assumptions 1 – 4, 6, and 7 hold, then b⌧ btre
P

�! ⌧tre and

p

N1
�

b⌧ btre � ⌧tre �Bb
tre

�

p

V CV
tre + V CM

tre

D
�! N (0, 1).

Proof. We show the proof for the ATE, because it is direct for the ATT after that result. From

the standard law of large numbers, we already know

 

1

N

 

N
X

i=1

(µ1(Xi)� µ0(Xi))

!

� ⌧

!

P
�! 0,

and from definition of Eb in (14), we have

E
⇣

N (Eb)
2
⌘

=
1

N

N
X

i=1

E
⇣

(1 +K(i))2 ✏2i

⌘

= E
⇣

(1 +K(i))2 �2(Xi,Wi)
⌘

,

and by Lemma 4.1, E(N (Eb)
2
) = O(1). Thus, using Markov’s inequality, and the order of con-

vergence of Bb, we can readily conclude the proof of consistency. In order to show the normality

property, from Lemma 4.1 we have that V CV is bounded in N and from Assumptions 1 and 4

the same holds for V CM. From the fact that
p

N
�

b⌧ b � ⌧ �Bb
�

=
p

N Ab +
p

N Eb, the Standard
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Central Limit Theorem and properties of Eb give

p

N Ab D
�! N (0, V CM). (27)

Finally, using the Linderberg-Feller Central Limit Theorem19, Proposition 3.2 and following the

same argumentation provided by Abadie & Imbens (2006) when showing their Theorem 4 (here

the necessity of Assumption 7), it can be shown that

p

N Eb

p

V CV

D
�! N (0, 1). (28)

Because (27) and (28) are asymptotically independent, we conclude the proof.

We conclude this part by presenting conditions under which our estimators are
p

N -consistent.

Of course a trivial case holds when the conditional expectations, µw(·), are flat on the supporting

set. In addition, due to the order of conditional bias we have obtained, this property for the BLOP

matching estimator of the ATE holds true as well when k = 1 or k = 2, this being in fact the only

case, besides the trivial one, when this estimator attains the
p

N -consistency. For the estimator of

the ATT we have, however, that this property is also obtained when the number of control units

increases faster than the number of treated units as stated by Assumption 6. Summing up, these

results are presented in the following corollary.

Corollary 4.3. Suppose that Assumptions 1 – 5 and 7 hold, and that k = 1 or k = 2, (and/or

µw(·), w = 0, 1, is flat over X), then b⌧ b P
�! ⌧ and

p

N
�

b⌧ b � ⌧
�

p

V CV + V CM

D
�! N (0, 1).

Suppose Assumptions 1 – 4, 6, and 7 hold, and r > k
4 (and/or k = 1 or k = 2, and/or µ0(·) is

flat over X), then b⌧ btre
P

�! ⌧tre and

p

N1
�

b⌧ btre � ⌧tre
�

p

V CV
tre + V CM

tre

D
�! N (0, 1).

19This theorem remains valid conditional on {(Wi, Xi)}
N
i=1, which is relevant for our case.

23



References

Abadie, A. & Imbens, G. W. (2006), ‘Large sample properties of matching estimator for average

treatment e↵ect’, Econometrica 74, 235–267.

Cover, T. & Efron, B. (1967), ‘Geometrical probability and random points on a hypersphere’, The

Annals of Mathematical Statistics. 38, 213–220.

Dı́az, J., Rau, T. & Rivera, J. (Forthcoming), ‘A matching estimator based on a bi-level optimiza-

tion problem’, The Review of Economics and Statistics .

Evans, D., Jones, A. & Schmidt, W. (2002), ‘Asymptotic moments of near-neighbour distance

distributions’, Proc. R. Soc. Lond. 458, 2839–2849.

Heckman, J., Ichimura, H. & Todd, P. (1998), ‘Matching as an econometric evaluation estimator’,

Review of Economic Studies 65, 261–294.

Imbens, G. W. & Wooldridge, J. M. (2009), ‘Recent developments in the econometrics of program

evaluation’, Journal of Economic Literature 47, 5–86.

Majumdar, S., Comtet, A. & Randon-Furling, J. (2010), ‘Random convex hulls and extreme value

statistics’, Journal of Statistical Physics 138, 995–1009.

Rockafellar, R. (1972), Convex Analysis, Princeton University Press, New Jersey.

Rosenbaum, P. & Rubin, D. (1983), ‘The central role of the propensity score in observational studies

for causal e↵ects’, Biometrics 70, 41–55.

Rubin, D. (1973), ‘Matching to remove bias in observational studies’, Biometrika 29, 159–183.

Wendel, J. (1962), ‘A problem in geometric probability’, Math. Scand. 11, 109–111.

24


	Introduction 
	Preliminaries
	Basic concepts, notation and standing assumptions
	The BLOP matching estimator and some intuition behind the results

	Some results in geometric probability theory
	The probability of not being in the convex hull of the nearest neighbors
	The number of times that a unit is used as a match by the BLOPs

	Asymptotic properties of the BLOP matching estimator
	The order of the conditional bias
	Variance, consistency, and normality properties


