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Abstract

This paper presents an asset-trading model of homogeneous information with rational

and behavioral agents. We provide some conditions for the existence of an asset pricing

bubble. Broadly speaking, a bubble arises if and only if there is a positive probability

of a mania: a subset of states in which the absorbing capacity of the behavioral agents

is greater than the maximal selling pressure of the rational agents.
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1. Introduction

When we see a stock price path like the one depicted in Figure 1 an all too familiar kind

of thought usually comes to mind: If only I. . . (had bought stocks in 1995 and sold them in

2000). Such feelings of regret may be inevitable to some but do not stay for long: Even if

the first thing that comes to mind is the lost opportunity of earning over 150% in five years,

the second, consoling thing we tell ourselves upon reflection is that nobody could know in

advance when to buy and sell. Indeed, we further know this second thought is well-grounded

in reason: There is no such thing as free lunch and the 1995–2003 run-up and collapse we

see in Figure 1 could take place only because it was unpredictable.

Narrative accounts of dramatic asset price increases followed by a collapse usually go

as follows (Galbraith, 1994; Shiller, 2000a; Kindleberger and Aliber, 2005). After some

particularly good news about the profitability of a certain investment, smart investors buy

assets bidding up their price. The initial price rise calls the attention of outsiders who
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Figure 1: Standard & Poor’s 500 stock price (1980–2003) in January 2000 dollars (solid line).
Source: Robert J. Shiller’s website. Linear trend ±3 S.D. using 1980–1995 data (dotted lines).

extrapolate the most recent trend and enter the market seeking fortune. As outsiders keep

entering the market the price grows even higher, at an unsustainable rate. Then, a spiral of

speculation develops in which new purchases are no longer driven by the initial good news

but rather by the expectation of reselling the assets at an even higher price. As the process

continues to feed itself a mania could develop, ‘a loss of touch with rationality, something

close to mass hysteria’ in the words of Charles P. Kindleberger, that we shall formalize

below as a period in which outsiders are so bullish that a coordinated sell by smart investors

could not halt the price run-up. A mania is, thus, the pinnacle of the self-feeding process

of speculation; the vicious circle of price increases and subsequent positive feedback trading.

As a matter of fact, we borrow the wording from Walter Bagehot’s 1856 Essay on Edward

Gibbon, ‘Much has been written about panics and manias, much more than with the most

outstretched intellect we are able to follow or conceive; but one thing is certain, that at

particular times a great deal of stupid people have a great deal of stupid money.’

The historical record is full of examples of speculative episodes (see Kindleberger and

Aliber, 2005) and people often see them as unmissable opportunities to earn exceptional

margins on their money. There is a strong incentive to attempt to buy low and sell high,

and the strategy that maximizes profits is fairly clear to anyone: enter the market just before

it starts to boom and leave it just before it is about to bust. Yet the right timing of moves

is not obvious at all and this makes the optimal strategy hard to implement in practice.

Even so, many are still aware that boom and bust cycles occur from time to time and guess
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that those who are attentive enough to buy early on and cautious enough to sell before the

eventual collapse actually make lots of money.

Economists have long been intrigued by the recurrence of boom and bust cycles in as-

set prices. Examples like the 1995–2003 run-up and collapse we see in Figure 1 cannot be

foreseeable if they should be consistent with the traditional, rational view on financial mar-

kets. That is, these events should take everyone by surprise, follow no particular pattern,

and, what is more, prices should at all times track the actual evolution of the asset’s real

value. Indeed, under full rationality a standard backward induction argument rules out the

possibility of predictable boom and bust cycles.

The standard argument is undermined by the evidence against the empirical validity of

the backward induction principle (see McKelvey and Palfrey, 1992) as well as by other well-

documented behavioral biases (Shiller, 2000a; Shleifer, 2000; Barberis and Thaler, 2003). In

spite of this evidence, the profession has insisted on its attempts to build coherent theories

of boom and bust cycles robust to the presence of well-financed, fully-rational traders. A big

step in this direction is taken in Abreu and Brunnermeier (2003). Their work represents a

remarkable advance in our understanding of boom and bust episodes in at least one important

dimension: It is the first paper in which smart investors have the collective ability to halt a

price run-up induced by irrational traders but nevertheless choose to ride it rather than to

lean against it.

The modelling approach of Abreu and Brunnermeier has its roots in the second-generation

models of currency attacks. In their model, a critical mass of smart investors is needed to

bring prices down—just as a critical mass of speculators is necessary to force a government

to abandon a currency peg. The dichotomy between rational and irrational traders in Abreu

and Brunnermeier (2003) is akin to those between speculators and the government in the

currency attack model of Morris and Shin (1998) and between depositors and commercial

banks in the bank run model of Goldstein and Pauzner (2005). In these two later papers it

is assumed that there is some region of the fundamentals in which the status quo survives no

matter what the actions of the players are. That is, there are states in which the currency

peg survives even if all speculators attack it and states in which the bank survives even if all

depositors withdraw their funds. In our model below we introduce an identical assumption

that allows for states in which the price run-up induced by irrational traders may temporarily

survive even if all rational traders sell. Again, a period in which such rather extreme market

conditions hold is what we call a mania.

The idea that under short sale constraints stock prices reflect only the most optimistic

beliefs goes back at least to Miller (1977). If too many bullish outsiders own stocks, for exam-

ple, it is then natural to think that market prices will portray their expectations, especially
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in times when the shorting market works particularly bad. (Recall that to sell short shares

one must borrow them first and they are more difficult to borrow if they are held primarily in

retail accounts.) Our model studies the implications of the mere possibility of a future mania

for the pricing of assets at earlier periods. As in Abreu and Brunnermeier (2003) we assume

that rational traders are collectively able to drive prices down at any state but nevertheless

show that they choose to ride the run-up. In doing so, we dispense with a key assumption in

Abreu and Brunnermeier (2003) concerning asymmetric information about the fundamental

value of assets that we consider to be problematic. We show existence and uniqueness of

a non-degenerate mixed strategy equilibrium under homogeneous information in which all

rational traders expect a positive return from speculation and perform comparative statics

exersises.

The rest of the paper is organized as follows. In Section 2 we justify our choice of a

homogeneous information framework on the idea that a theory that rests solely on asym-

metric information may no fit well with what we observe in reality. Section 3 presents a

model that is very close to the formulation of Abreu and Brunnermeier (2003) but where

there is no asymmetric information and where behavioural traders’ bullishness is assumed to

be time-varying and random. Section 4 contains our main findings and Section 5 concludes.

Proofs and auxiliary results are collected in Appendix A.

2. Homogeneous Information

As pointed out by Eugene F. Fama (Fama, 1970), market efficiency has no empirical impli-

cations of its own and we can only test for it within an explicit market model. This means

we cannot talk about a bubble on an asset unless we define what its fundamental value is.

Economic theorists circumvent this problem by writing down models in which fundamental

values are well defined and then study whether bubbles can arise in equilibrium under each

particular specification.

In the next section we do precisely that. We present a very stylized, partial equilibrium

stock market model and ask whether bubbles may arise in that specific environment. We work

within a homogeneous information framework that is particularly hostile to the emergence of

bubbles, and we do so because we find that a model in which bubbles arise only because there

is asymmetric information about the fundamental value of assets presents several empirical

challenges. Besides this, we also believe that the main uncertainty that smart investors

face is the actual behavior of less sophisticated/irrational investors rather than their peers’

opinions about whether a bubble is actually in place. We devote the rest of this section to

persuade the reader that our approach is both sensible and worth pursuing.
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With rational agents and homogeneous information, asset price bubbles have been ruled

out from general equilibrium models under very general conditions (see Santos and Woodford,

1997). Asymmetric information about fundamentals alone neither leads to bubbles under

rational expectations (see Tirole, 1982; Milgrom and Stokey, 1982), but combined with short

sale constraints it has allowed Allen, Morris, and Postlewaite (1993) and Conlon (2004) to

work out examples where bubbles persist because they are not common knowledge among the

agents in the economy. These examples, however, are exceptional in that they require fairly

specific parameter restrictions to prevent equilibrium prices from revealing the underlying

fundamentals.1

Abreu and Brunnermeier (2003) proposed a more robust, partial equilibrium model of

bubbles based upon a clean and nice story of sequential awareness. In their model, a stock

price index departs from fundamentals at a random point in time because of bullish be-

havioural traders. Rational arbitrageurs become sequentially aware of the mispricing there-

after, but the bubble never becomes common knowledge because no arbitrageur knows where

he is in the queue. If the stock price index grows fast and long enough in expectation before

the depart from fundamentals, there is a unique equilibrium in which all arbitrageurs choose

to ride the bubble.2

Robert J. Shiller has collected empirical evidence that does not fit particularly well with

the hypothesis of sequential awareness by rational traders. He administered questionnaires

to institutional investors between 1989 and 1998 with the aim of quantifying their bubble

expectations. These are defined in Shiller (2000b) as ‘the perception of a temporary uptrend

by an investor, which prompts him or her to speculate on the uptrend before the “bubble”

bursts.’ Shiller’s main finding was precisely the absence of the uptrend in the index that

would be implied by the sequential awareness hypothesis along the bubble.

Bubbles that last for years also require a large dispersion of opinion among rational

traders. Figure 1 displays 1980–2003 real S&P 500 prices and a linear trend with ‘confidence

1Moreover, because a rational agent holds a bubbly asset only if he expects that asset to be further
overpriced in the future, he must believe that other agents will come with a more extreme (optimistic)
opinion about its fundamental value as their information gets refined with the passage of time.

2Incidentally, this equilibrium requires a (too) high fundamental value. In their model the stock price
index pt = egt coincides with its fundamental value until a random time t0 that follows an exponential
distribution of parameter λ. If the fundamental value grows at the risk-free interest rate r thereafter, then
g − r > λ becomes a necessary condition for bubbles (op. cit., p. 180). This implies that the expected
present fundamental value of stocks at t0,

E[e−rt0pt0 ] =

∫ +∞

0

e(g−r)tλe−λtdt,

is infinite because the integral does not converge for g − r > λ. Our model also dispenses with this infinite-
value assumption.

5



bands’ located at three standard deviations. This trend is particularly generous because it

was computed using data from the bull market of the eighties and early nineties. If, being

further conservative, we placed the birth of the bubble at the point labelled ‘Greenspan’

in Figure 1,3 the time elapsed before the 2000 peak would amount to almost four years.

The question of whether there was enough dispersion of opinion to sustain a four-year long

bubble may have no satisfactory answer, however, as we are dealing here with highly stylized

models from where it would be unfair to draw quantitative predictions.

But our case for homogeneous information goes beyond the sequential awareness hypoth-

esis and concerns the role asymmetric information about fundamentals in general as the

primary source of bubbles. First, if bubbles persist solely on the basis that they are not

common knowledge among rational traders, then a public disclosure of the fact that assets

are overpriced should cause their immediate burst. Kindleberger and Aliber (2005, ch. 5)

document that the historical record provides little evidence supporting this claim. Virtually

every bubble has been accompanied by unsuccessful public warnings by either government

officials or members of the business establishment. A famous example of this was Alan

Greenspan’s statement on 5 December 1996 that the US stock market was ‘irrationally exu-

berant.’ Indeed, a glimpse at Figure 1 could make us think that the Fed chairman’s warning

was—if anything—more an encourager than an deterrent.

Second, there are instances in which the cash flows of various stocks are linked via an

explicit and publicly known formula that actual prices do not comply with. In these cases

any deviation from the theoretical par is by definition a bubble that cannot be attributed

to asymmetric information about their relative fundamental values. Such opportunities for

unambiguous relative price comparisons are rare, but they constitute an exceptional tool for

discerning among the various potential sources of mispricing.

Lamont and Thaler (2003) study a sample of carve-outs in which the parent firm has

stated its intention to spin off its remaining shares of a subsidiary firm. They focus par-

ticularly in the case of Palm and 3Com. 3Com sold a 5% of Palm on March 2, 2000 and

announced a spin off by which 3Com shareholders would receive 1.5 shares of Palm for every

share of 3Com that they owned. This implied that the price of 3Com shares should be at

least 1.5 times the price of Palm shares. However, the price of Palm shares experienced—for

months—a bubble that involved a negative value for 3Com’s non-Palm assets and business.4

3The ‘Greenspan point’ is further explained below.
4Another piece of evidence provided by Lamont and Thaler is that holders of Palm shares were paying

much more than they could pay using the options market, probably meaning that those investors were
ignorant of the options market and unaware of the cheaper alternative. Their narrative also seems to fit well
with the concept of mania outlined in the introduction: ‘In the case of Palm, arbitrageurs faced little risk
but could not find enough shares of Palm to satiate the demands of irrational investors.’
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Another source of examples is provided by the so called ‘siamese-twin’ securities. The

most famous case is probably that of Royal Dutch and Shell, but there are others (cf. Froot

and Dabora, 1999). These two firms merged their interests in 1907 on a 60:40 basis while

remaining separate and distinct entities. It is information of public domain that the cash

flows of both firms are split in these proportions, which implies that the price of Royal Dutch

shares should be equal to 1.5 times the price of Shell shares. Still, as in the example of Palm

and 3Com above, huge relative price deviations from the theoretical par have been the rule

rather than the exception in the markets they are traded.

Lamont and Thaler point at the case of Palm and 3Com to underscore the role of short

sale constraints, whereas Shleifer (2000, ch. 2) interprets the case of Royal Dutch and Shell

as evidence supporting the importance noise trader risk. Our model will combine both

features, but for now our main message is that neither bubble can be attributed to a rational

disagreement about fundamentals because in these examples cash flows are explicitly tied

together.

Third, there is strong evidence showing that lack of common knowledge of fundamentals

is unnecessary to cause asset price bubbles in experimental settings. Smith, Suchanek, and

Williams (1988) show that bubbles can emerge in a setting where the probability distribution

of dividends is commonly known to all participants. Their results are robust; they have

been replicated many times and under various experimental designs. Lei, Noussair, and

Plott (2001) went a step further and studied whether it was lack of common knowledge

of rationality itself—rather than of fundamentals—what was driving earlier experimental

findings. They found that only actual irrational behavior could explain many of the bubbles

they observed.

Our approach in this paper may be illustrated by a famous quote attributed to Sir Isaac

Newton (Malkiel, 1985), who surely qualifies as one of the most rational men of his time.

After being caught by the burst of the South Sea Bubble, in which share prices of the

South Sea Company went up and down almost tenfold in less that a year, Newton himself

exclaimed, ‘I can calculate the motions of heavenly bodies, but not the madness of people.’

In our view, even more important than what Newton says in this widely-cited quote is what

he does not say; his concerns about the root of his financial failure were clearly not on any

uncertainties surrounding the actual worth of the Company, neither on how this information

was disseminated across investors. Much on the contrary, he put the blame of his misfortune

on his own inability to predict the irrational behavior of the multitude.
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3. The Model

Our framework borrows from the continuous-time model of Abreu and Brunnermeier (2003).

We consider a market for stocks. There is a continuum of mass 0 < µ < 1 of arbitrageurs

who seek to maximize the expected discounted value of their transactions. They can sell

and buy back shares at any time at the discounted cost 0 < c < 1 per transaction, but they

are constrained on the maximum long and short positions they can take. In particular, the

selling pressure exerted by each arbitrageur must lie within the unit interval at any time.

There is also a continuum of mass 1 of behavioral traders whose trading behavior is given

exogenously and summarized by their aggregate absorption capacity κ.5 Arbitrageurs cannot

observe the absorption capacity of behavioral traders.

The fundamental value of stocks is ert for all t ≥ 0. The pre-crash price is egt, with

g > r > 0. The market price is equal to the pre-crash price as long as the aggregate selling

pressure s of arbitrageurs stays below the absorption capacity κ of behavioral traders. As

soon as this ceases to happen, the market price drops to its post-crash level ert.

We interpret the market price process as follows: A series of unanticipated good news

show before t = 0 that justify the higher growth rate g. Thereafter, the higher rate is no

longer justified by fundamentals, which now grow at rate r. A bubble starts at t = 0 that

persists until the selling pressure by arbitrageurs equals (or exceeds) the absorption capacity

of behavioral traders.

The absorption capacity κ is a function of time and of a random variable X with standard

uniform distribution. Random variable X is a hidden state variable, but its probability law is

common knowledge among arbitrageurs. For each positive realization x of X, the absorption

capacity is assumed to be given at any time by the formula:

κ(x, t) :=

{
x sin

(
t
x

)
if 0 ≤ t < πx

0 if t ≥ πx,
(1)

where π = 3.1415 . . . For continuity, we also assume that κ(0, t) := 0 for all t ≥ 0. Figure 2

displays several sample paths of κ : [0, 1]×R+ −→ [0, 1] (for states x = 0.2, 0.4, 0.6, 0.8, 1.).

It is a continuous function, nondecrasing in x for t fixed and cuasiconcave in t for fixed x.

The shape of the sample paths of κ reflects the idea that, as long as the bubble persists, more

and more money from behavioral traders enters the market until the maximum established

by state variable X is reached; at this point, the process reverses. This aggregate behavior

may be thought as resulting from individual entry-exit strategies of behavioral traders that

5The assumption that there is a mass of size 1 of behavioural traders and a mass µ ≤ 1 of rational traders
is also in DeLong, Shleifer, Summers, and Waldmann (1990).
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Figure 2: Various trajectories of κ(·, t) (dashed lines) and the equilibrium aggregate selling pressure
s(t) for parameter values µ = 0.8 and g − r = 0.1 (solid line).

realize that the bubble opens a temporary window for speculation but do no enter into more

sophisticated backward-induction chains of reasoning. Larger states correspond to more

aggressive behavior from the part of behavioral traders; for larger values of x two things

happen: (i) more money flows into the market, and (ii) it stays in for longer. These allow

to interpret state variable X as an index of the behavioral traders’ bullishness along the

bubble.

Arbitrageurs get no information before the crash. On the other hand, the best they can

do after the crash is to quit and never re-enter the market—because all transactions made

after the crash are costly and worthless. There are no contingencies to which they may have

to adapt besides the crash itself, and the adaptation to this event is trivial. This means that

an arbitrageur’s strategy only has to specify a set of orders that will be placed sequentially

along the bubble. Because transactions are costly, each arbitrageur plans, at most, a finite

amount of them.

A pure strategy profile is a function σ : [0, µ] × R+ −→ [0, 1] that specifies the selling

pressure σ(i, t) exerted by each arbitrageur i ∈ [0, µ] at each instant t ∈ R+. Without any

loss of generality, we assume that all arbitrageurs start at their maximum long position, i.e.,

σ(i, 0) = 0 for all i. Their aggregate selling pressure is

s(t) :=

∫ µ

0

σ(i, t) di.

A trigger-strategy for an arbitrageur specifies a unique transaction at which he completely

sells out. The set of trigger-strategies is thus indexed by the time at which each such sale
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occurs. For example, if each arbitrageur i plays some trigger-strategy ti, the profile σ(i, t) =

1[ti,+∞)(t) obtains. A mixed trigger-strategy is a mixed strategy which only contains trigger-

strategies in its support. If each arbitrageur independently draws a trigger-strategy from the

same distribution function F , the corresponding aggregate selling pressure is s(t) = µF (t)

almost surely for all t ≥ 0.

We define the date of burst of the bubble given the absorption capacity κ and the aggre-

gate selling pressure s.

Definition 1. The date of burst of the bubble is the random variable

T (x) := inf {t : s(t) ≥ κ(x, t), t > 0}. (2)

The market price jumps from the pre-crash to the post-crash level at the date of burst,

i.e.:

p(x, t) :=

{
egt if t < T (x)

ert if t ≥ T (x).

All transactions take place at the market price p. This assumption may seem questionable

if there are states in which the limit from the left of the aggregate selling pressure is strictly

smaller than the absorption capacity at the date of burst. It would be more natural to

assume that some of the orders placed at the date of burst, up to the limit imposed by the

outstanding absorption capacity at that moment, are executed at the pre-crash price. Our

assumption simplifies the analysis and does not affect the results.

For each state x > µ there is a non-empty interval of time wherein the absorption capacity

exceeds the maximum aggregate selling pressure. Formally, Iµ(x) := {t : κ(x, t) > µ} 6= ∅
for µ < x ≤ 1. We call such interval a mania. A mania is, thus, a period in which not

even a coordinated attack from the part of arbitrageurs can burst the bubble. We shall

see below that if a mania could not happen, the bubble would always collapse at t = 0.

Its significance comes form the fact that, whereas the abnormal price growth g > r gives

symmetric incentives to stay in the market to all arbitrageurs, the possibility of occurrence

of a mania allows them to choose asymmetric exit strategies in equilibrium.

4. Symmetric Equilibria in Trigger-Strategies

Arbitrageurs are fully rational players. They form a rational conjecture about the date of

burst and choose their preferred trading strategy accordingly. The second step is straight-

forward, but to form a rational conjecture about the date of burst requires a good deal of

strategic thinking.
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We show that there exist symmetric equilibria in mixed trigger-strategies. These equilib-

ria are characterized by a mixed trigger-strategy F such that—if everyone else plays it—each

arbitrageur finds every strategy in its support optimal. The mixed trigger-strategy F de-

termines the aggregate selling pressure which, trough (2), defines the date of burst. Since

there is a continuum of arbitrageurs, none can affect the date of burst, which is the only way

in which the payoff of an arbitrageur may be affected by the choices of others. Hence, the

problem of an arbitrageur is to choose a best response given the distribution of the date of

burst induced by F . A symmetric equilibrium is found if every strategy in the support of F

is indeed a best response.

The payoff from the trigger-strategy t is

v(t) : = E
[
e−rtp(X, t)− c

]
= e(g−r)t[1−G(t)] +G(t)− c, (3)

where G denotes the distribution function of the date of burst.6 Equation 3 neatly expresses

the arbitrageurs’ trade-off between staying in and exiting the market. On one side, the

discounted pre-crash price grows with time; on the other side, the probability of survival of

the bubble decreases. Optimal trigger-strategies fulfill the first-order condition v′(t) = 0.

We may also write this as

h(t) =
g − r

1− e−(g−r)t
,

where h(t) denotes the hazard rate that the bubble will burst at t.7 This equation will

hold for all t within the support of the non-degenerate equilibrium mixed trigger-strategy of

Proposition 2 below.

4.A. Pure strategies

Our first result is rather unsurprising. If all other arbitrageurs play the trigger-strategy

t = 0, the bubble bursts immediately. Any transaction takes place at the post-crash price

and hence yields at most 1 − c. This shows that the trigger-strategy t = 0 is indeed a best

response, which characterizes a symmetric equilibrium.

Proposition 1. There is a unique symmetric equilibrium in pure trigger-strategies. In this

equilibrium each arbitrageur sells out at t = 0.

It is easy to see that there is no other symmetric equilibrium in pure trigger-strategies

6An expression for the payoff from a general trading strategy is given in the proof of Proposition 2 in
Appendix A.

7This is also the marginal sell-out condition in Abreu and Brunnermeier (2003).
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by the usual backwards induction argument. No such equilibrium exists for t ≥ π because

the bubble never bursts after π. When everyone else sells at the same date 0 < t < π there

is an upward jump in the probability distribution of the date of burst at t. An arbitrageur

who deviates and sells a bit earlier sacrifices an infinitesimal reduction in the pre-crash price

in return for a discrete decrease in the probability of burst. This shows that selling at the

same time as others do cannot be a best response.

There are uncountably many equilibria in which the bubble bursts at t = 0. For instance,

there are uncountably many equilibria in which every arbitrageur plays a mixed trigger-

strategy that puts strictly positive mass on t = 0. From now on, we restrict the analysis to

equilibria in which the bubble has some chance of survival, that is, to equilibria in which

G(0) < 1.

The model thus keeps the standard efficient-market hypothesis (EMH) solution: de-

spite the potential speculative profits, there are equilibria in which competition among arbi-

trageurs causes an early burst and no one benefits from the bubble. The bubble is extremely

weak in its infancy—when virtually any selling pressure can make it burst—and its survival

requires coordination among arbitrageurs. They have the opportunity to feed the bubble,

perhaps all the way to a mania, but the fear that others may not concur can ruin it all.

4.B. Non-degenerate mixed strategies

Arbitrageurs do not have to content themselves with this solution. It is possible to reconcile

the individual incentive to time the market with the collective interest in feeding the bubble.

The ingredient that makes it possible is the possibility of occurrence of a mania. If a

mania could not happen, an arbitrageur would stay in the market only if he believed that a

sufficiently big mass of arbitrageurs would stay in as well. However, these beliefs cannot be

held uniformly across the population because they are incongruent. But if a mania can take

place some arbitrageurs may find it optimal to stay invested as long as they believe that the

bubble will not be killed too soon. The reason is that arbitrageurs are no longer competitors

during a mania.

How can these arbitrageurs rationally believe that the rest will not kill the bubble? We

show below how this coordination problem is resolved in equilibrium: Arbitrageurs leave the

market at a rate that allows the outbreak of manias.

The shape of function G in (3) determines what is optimal for an arbitrageur. We know

that for a mixed trigger-strategy F to characterize an equilibrium, all pure strategies in the

interior of its support must be optimal. This imposes restrictions on G that translate into

restrictions on F trough function T . The following result states two properties of the date of

burst T that we use to show how individual rationality restricts the shape of any equilibrium
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mixed trigger-strategy F .

Lemma 1. If there is a symmetric equilibrium in mixed trigger-strategies that fulfills G(0) <

1, then function T is strictly increasing and continuous.

The previous lemma tells us how to obtain the distribution of the date of burst from the

distribution of the state variable:

G(t) := P(T (X) ≤ t) = P(X ≤ T−1(t)) = T−1(t). (4)

Corollary 1. Given the conditions of Lemma 1, G(t) = T−1(t) for all t ≤ π − arcsin(µ).8

Restrictions on G thus translate into restrictions on T−1. Let us label the inf and the

sup of the support of F as t and t (Lemma 5 in Appendix A shows that the support of F is

indeed an interval). From Corollary 1, we rewrite function v as

v(t) = e(g−r)t
[
1− T−1(t)

]
+ T−1(t)− c.

Let us label the equilibrium payoff as v∗. Since v∗ is the payoff to each strategy inside the

equilibrium support we must have

T−1(t) =
e(g−r)t − (v∗ + c)

e(g−r)t − 1
(5)

for all t ≤ t ≤ t (Lemma 4 in Appendix A shows that this equation holds also at the

endpoints). Note that, because v∗+ c > 1, the right-hand side of (5) defines a differentiable,

strictly increasing function of time.

Lemma 2. Given the endpoints t and t of the equilibrium support, function T−1 is uniquely

determined for all t ≤ π − arcsin(µ).

Proof. We already have a closed-form expression for function T−1(t) in [t, t] that is given by

(5). Because no arbitrageur sells before t, the bubble bursts when the absorption capacity

returns to zero for all states x < t/π (see Figure 2). This means that function T−1 is equal

to t/π for all t < t. Because T is strictly increasing and continuous by Lemma 1, some

price path must decrease at each t < t ≤ π − arcsin(µ). This implies that the sample path

of κ that touches s at t cannot be strictly increasing at t. Otherwise, because s is flat for

t ≥ t, there would be some interval (t, t + ε] (with ε > 0) in which no price path decreases,

8We restrict arcsin to its principal branch hereafter. Quantity π − arcsin(µ) corresponds to the second
time at which function κ(1, t) is equal to µ. Because κ is smaller than µ for all x and t > π − arcsin(µ) no
bubble bursts beyond this point.
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contradicting Lemma 1. Given the shape of κ, each higher path must intersect s for the

first time while it is decreasing. Hence, T−1(t) is the solution x to κ(x, t) = µ for all t in

(t, π − arcsin(µ)]. This completes the proof.

The next lemma shows that the endpoints t and t of the equilibrium support are both

unique.

Lemma 3. All F fulfilling the conditions of Lemma 1 have the same support.

Lemma 2 and Lemma 3 imply that function T is unique for the class of equilibria we

consider. Hence, to find an equilibrium within this class amounts to find a mixed trigger-

strategy F which, trough (2), induces such T . Our main result is that there is a unique

mixed trigger-strategy that does the job.

Proposition 2. There is a unique equilibrium fulfilling the conditions of Lemma 1. In this

equilibrium, each arbitrageur plays the mixed trigger-strategy

F (t) =
1

µ
κ
(
T−1(t), t

)
(6)

for all t ≤ π − arcsin(µ).

The equilibrium function s displayed in Figure 2 shows how everything fits together. The

bubble bursts at the point at which the realized sample path of κ crosses s. Some paths

cross s while they are increasing, whereas others cross it while they are decreasing. The

key to understand the persistence of bubbles is to notice that some paths corresponding to

states x > µ are of the second kind, that is, that manias can indeed occur in equilibrium.

Arbitrageurs start selling at t, but their aggregate selling pressure accumulates slowly enough

to feed the bubble, to let it grow.

Some arbitrageurs sell earlier than others. Those who rush out of the market have

more chances to sell at the pre-crash price, and those who wait have the opportunity to

earn higher profits; but all expect the same payoff ex-ante. The coordination achieved in

equilibrium is remarkable, but imperfect. Most sample paths of κ cross s before they reach

their maximum, which means that arbitrageurs as a whole could have done it better because

there are still some behavioral traders willing to inject money into the market. This is the

curse of competition, the same that may induce an immediate collapse as in Proposition 1.

We should add a remark on the way we interpret the equilibrium in Proposition 2. We

have focused on symmetric equilibria though it is easy to see that there are uncountably many

asymmetric equilibria that share the same s. The reason is that we find that an asymmetric

equilibrium is an unnatural solution concept within our essentially symmetric context. We
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would find it hard to justify why otherwise identical arbitrageurs played different strategies

in equilibrium, how did they know which strategy should they play, and so on. But symmetry

cannot be more than a rough approximation to reality, however appealing and convenient.

Asymmetries surely play their role in the workings of the stock market, though we do not

bring them to the core of the discussion. We interpret our mixed strategy equilibrium

from the Bayesian perspective, that is, from the view that it serves as an approximation

to a more complex world in which each arbitrageur harbors doubts about privately known

characteristics of other arbitrageurs. Rather than to a classical randomizing interpretation

of mixed strategies, we subscribe to the modern view in which arbitrageurs would be in fact

playing pure strategies, with mixed-strategies representing their uncertainties about others.

Because every arbitrageur is negligible, there is no reason for anyone to conceal his action.

4.C. Comparative statics

There are three parameters of interest in our model: c, g − r, and µ. It can be readily seen

from (3) that parameter c does not affect marginal utility and, therefore, does not affect

choice. Our numerical exercises corroborate the commonsensical intuition that an increase

in g−r encourages arbitrageurs to ride the bubble. In particular, we see that the equilibrium

strategy (6) shifts to the right as g− r goes up—although the effect is milder for large values

of parameter µ.

The most interesting quantity is 1 − µ, which may be interpreted as the probability

of a mania taking place. An increase in µ discourages riding the bubble. Further, it is

straightforward to prove that the equilibrium F and s converge to κ(1, t) as µ approaches

one—rather than to 1[0,+∞)(t). That is, the equilibrium in Proposition 2 is robust in the

sense that it does not converge to the standard pure-strategy equilibrium of Proposition 1

as the probability of a mania goes to zero.

Proposition 3. In the limit, as µ approaches 1, the equilibrium mixed trigger-strategy F and

the corresponding aggregate selling pressure s converge to the function sin(t) for all t ≤ π/2.

5. Concluding Remarks

In this paper we present a game-theoretic model of stock price bubbles. Our model is in-

tended to formalize a widely-held view on how the strategic side of a bubble is perceived

by sophisticated investors. Arbitrageurs know the fundamental value of stocks but are un-

certain about behavioral trading. This prevents them from foreseeing the crash, yet all ride

the bubble for some time. The belief on a rising bubble is self-fulfilling and allows some

arbitrageurs to profit from behavioral traders—and from other arbitrageurs as well. Some
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arbitrageurs sell earlier than others, and the gains from waiting are just compensated by the

increase in the probability of a crash. In short, a bubble is (roughly) a positive-sum, risky

game in which sophisticated investors extract rents from less sophisticated investors.

Proposition 1 and Proposition 2 provide two legitimate solutions of the game. Proposi-

tion 2 hints on the logic of the persistence of bubbles and suggests how this phenomenon can

be reconciled with a good deal of rationality in the market. The standard EMH equilibrium

in Proposition 1 loses strength in comparison since the chances are that arbitrageurs will

wait to see whether a bubble rises up. Further, the standard equilibrium washes out if we

allow the market price to undershoot the fundamental value at the date of burst.
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A. Proofs

We use two properties of functions G and v repeatedly. First, because G is a distribu-

tion function, it is right-continuous, which, in turn, implies that v is also right-continuous.

Second, v is increasing whenever G is constant and vice versa.

A.A. Preliminary results

Lemma 4. Given the conditions of Lemma 1, v(t) = v(t) = v∗.

Proof. If either the infimum or the supremum is an isolated point of the support, then it is

a mass point of F , and v at that point must be v∗.

Because v is right-continuous, limt↓t v(t) = v(t), which, if t is not isolated, implies v(t) =

v∗.

Suppose that v(t) < v∗. If t is not isolated, this can happen only if v has a downward

jump at t, which, by (3), only occurs if G jumps at t. G jumps only if s (and F ) also have a

jump at the same point; a point in which s first surpasses a strictly positive mass of sample

paths of κ. But this means that t is a mass point of F , and so v(t) = v∗.

Lemma 5. Given the conditions of Lemma 1, t > 0, and the support of F is an interval.

Proof. We know from Proposition 1 that F is non-degenerate. Because G is right-continuous

and G(0) < 1, we know that for every ε > 0 there must exist some δ such that t < δ implies

that G(t) < G(0) + ε. Take any ε < 1 − G(0) and see that v(δ) > 1 − c. This shows that

v(t) = v∗ > 1− c, and so t > 0.

We use the following properties of function s. We must have both s(t) < κ(1, t) for all

0 < t ≤ arcsin(µ) and s(t) = µ for all t ≥ π − arcsin (µ). Otherwise, the bubble bursts no

later than t with probability one, which would imply v(t) = v∗ = 1− c.
We show now that F is strictly increasing for all t ≤ t ≤ t. Suppose that F (t0) = F (t1) =

k0/µ for some t ≤ t0 < t1 ≤ t, that is, s(t) = k0 for all t ∈ [t0, t1]. We will see that this

leads to a contradiction. Let t− = inf{t|F (t) = k0/µ}, that is, t− belongs to the support of

F . Let x− be the solution to the equation κ(x, t−) = k0 (that this equation has a solution is

implied by the previous paragraph). The derivative of κ(x−, t) with respect to t, evaluated

at t−, cannot be strictly positive. If this were the case, there would exist some ε > 0 such

that s(t) = k0 < κ(x−, t) for all t− < t ≤ t− + ε, which, in turn, would imply that no

market price path decreases therein. But this contradicts that fact that t− belongs to the

equilibrium support; any point fulfilling t− < t ≤ t− + ε pays more than v(t−) = v∗ because

G(t) = G(t−).

18



Let t+ = sup{t|F (t) = k0/µ}, that is, t+ belongs to the support of F . Since some price

path has to decrease in (t−, t−+ε] for every ε > 0, and since the aforementioned derivative has

to be either negative or zero, we have that a price path decreases at each instant t− < t < t+,

that is, a sample path of κ intersects s for the first time at each of these instants. Let x+ be

solution to the equation κ(x, t+) = k0. We have just shown that function T is

T (x) =

[
π − arcsin

(
k0
x

)]
x

for all x− < x < x+. Therefore, we can make the change of variable t = T (x) and rewrite

the payoff function v for t− < t < t+ as

e(g−r)T (x)(1− x) + x− c, (7)

where x− < x < x+. Since function (7) is uni-modal for k0 ≤ x ≤ 1 (provided that k0 > 0),

we must have that v is decreasing for t− < t < t+; otherwise, the payoff would not be

maximized at t−. The payoff function v can only have downward jumps (which correspond

to upward jumps of G) and, therefore, we must have that v(t−) > v(t+), which contradicts

the fact that t+ belongs to the equilibrium support. This shows that F is strictly increasing

in [t, t].

Lemma 6. Given the conditions of Lemma 1, G is continuous and strictly increasing for all

t ≤ π − arcsin(µ).

Proof. Since s(t) = 0 for all t < t, we have that T (x) = πx for all x < t/π, which implies

that G(t) = t/π for all t < t. Thus, G is strictly increasing and continuous for all t < t.

Suppose that there were t ≤ t0 < t1 ≤ t such that G(t0) = G(t1) = h0. Then, v(t0) <

v(t1), contradicting the fact that v(t0) = v∗, as implied by the previous lemma. Also, if G

had a jump at some t ≤ t0 ≤ t, then v would have a downward jump at t0, which cannot

happen if v(t0) = v∗. Thus, G is strictly increasing and continuous for all t ≤ t ≤ t.

There cannot be any ε > 0 such that no price path decreases in (t, t + ε] because that

would mean that G(t + ε) = G(t), that is, v(t + ε) > v(t), which contradicts the fact

that v(t) = v∗. Since s is flat for all t ≥ t, any sample path of κ which intersects s for

the first time whithin that range has to be decreasing. This implies that one price path

decreases at each t < t ≤ π− arcsin(µ). Thus, G is strictly increasing and continuous for all

t < t ≤ π − arcsin(µ).
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A.B. Results in the main text

Proof of Lemma 1. T is monotone increasing because κ(x1, t) ≥ κ(x0, t) for all t and all

x1 > x0. Let us define

ξ(t) := sup {x|T (x) ≤ t}.

It is clear from the definition that T (x) ≤ t implies x ≤ ξ(t) and, hence, P(T (X) ≤ t) ≤
P(X ≤ ξ(t)). If x < ξ(t), then T (x) ≤ t; since T is monotone increasing, T (x) > t would

contradict the definition of ξ(t). Therefore, there is at most one point which could satisfy

both x ≤ ξ(t) and T (x) > t, namely x = ξ(t). Because the standard uniform is a continuous

distribution, any singleton has probability zero. Thus, we can write:

G(t) = P(T (X) ≤ t) = P(X ≤ ξ(t)) = ξ(t). (8)

Since T is monotone increasing, it can only have jump discontinuities. Suppose that T

had a discontinuity at x0 and let t0 < t1 be the one-sided limits of T as x approaches to

x0. Then, we should have that ξ(t) = ξ(t0) for all t0 ≤ t < t1, which, by Lemma 6 and

(8), cannot happen (ξ is strictly increasing for all t ≤ π − arcsin(µ)). This shows that T is

continuous.

To show that T is strictly increasing, suppose that T (x0) = T (x1) = t0 for some x0 < x1.

Let x− = inf{x|T (x) = t0} and x+ = sup{x|T (x) = t0}. Because T is increasing, ξ(t0) = x+

and ξ(t0 − ε) ≤ x− for all ε > 0. This means that ξ must have a discontinuity at t0, which

cannot happen since Lemma 6 together with (8) imply that ξ is continuous.

Since T is strictly increasing and continuous, ξ = T−1.

Proof of Lemma 3. Using the change of variable t = T (x), we can write

v(T (x)) = e(g−r)[π−arcsin(µ/x)]x(1− x) + x− c (9)

for all x ≥ T−1(t). This function is uni-modal for µ ≤ x ≤ 1. Since v(t) must be smaller

or equal than v∗ for all t > t, we know that T−1(t) cannot be smaller than the point x

maximizing (9). Otherwise, (9) would be strictly increasing at T−1(t), which contradicts

v(t) = v∗.

On the other hand, we know that s(t) ≤ µ for all t. This implies that, for all x > µ,

the inequalities arcsin(µ/x)x < T (x) < [π − arcsin(µ/x)]x cannot both be true: within the

interval of time (arcsin(µ/x)x, [π − arcsin(µ/x)]x)—the mania—the absorption capacity is

strictly greater than µ for all x > µ, which means that no price path can decrease therein.

The inequality T (x) ≤ arcsin(µ/x)x can neither be true. Suppose that there exists some x0 >
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µ such that T (x0) ≤ arcsin(µ/x0)x0. We know that for all x > x0 and all arcsin(µ/x0)x0 ≤
t ≤ [π−arcsin(µ/x0)]x0, κ(x, t) > µ. Therefore, no price path decreases within the interval of

time (arcsin(µ/x0)x0, [π − arcsin(µ/x0)]x0), which is incompatible with T being continuous.

In short, we must have that T (x) ≥ [π − arcsin(µ/x)]x for all µ < x ≤ T−1(t). Going back

to v, we must have

v(T (x)) ≥ e(g−r)[π−arcsin(µ/x)]x(1− x) + x− c (10)

for all µ < x ≤ T−1(t). This implies that T−1(t) cannot be greater than x, since x would

then contradict the inequality. Hence, there is only one admissible T−1(t), namely x, and

t = [π − arcsin(µ/x)]x.

Clearly, t gives v∗. On the other hand, t is the solution to

e(g−t)t
(

1− t

π

)
+
t

π
− c = v∗ (11)

for t < t. Such solution always exists and is unique because the left-hand side of (11), with

the change of variable t = πx, is uni-modal in [0, 1], equal to zero at t = 0, and lies above

the right-hand side of (9) for all x > µ.

Proof of Proposition 2. The proof consists of two parts. In the first part we show that function

F characterizes an equilibrium in mixed trigger-strategies. In the second part we show that

this is the only equilibrium.

Part I: For the first part, we first show that F is indeed a distribution function and then

show that F induces the equilibrium date of burst T .

Function F is a distribution function: Let endpoints t and t be as defined in the proof

of Lemma 3, and let function T−1 be as defined in the proof of Lemma 2. Suppose that the

aggregate selling pressure is

s(t) = κ(T−1(t), t),

for t ≤ π− arcsin(µ). By Definition 1, the date of burst in this case is T and its distribution

function is G = T−1 by (4) (which, recall, only requires T to be strictly increasing and

continuous, not the existence of a trigger-strategy equilibrium). We saw in the proof of

Lemma 3 that v(t) is then strictly increasing for all t < t and strictly decreasing for all t > t.

That is, all trigger-strategies outside the equilibrium support pay less than the equilibrium

payoff v∗. It only remains to show that no other pure strategy pays more that v∗. Consider an

arbitrary pure strategy involving N > 1 transactions (since all arbitrageurs liquidate a some

time, every pure strategy which is not a trigger-strategy involves more than one transaction).

Let (t, z) be the vector specifying the transaction dates (t1, . . . , tN) and the positions held
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between transactions (z1, . . . , zN), where zN = 1. Such strategy is a plan of action which says

what the arbitrageur will do along the bubble. If the bubble bursts between two transaction

dates, the arbitrageur liquidates. The payoff of a general pure strategy involving finitely

many transactions is, therefore,

V ((t, z)) :=
N∑
n=1

[
(zn − zn−1)e(g−r)tn − c

]
[1−G(tn)]

+ (1− zn−1 − c)[G(tn)−G(tn−1)]1[0,1)(zn−1),

where z0 = t0 = 0. It is a matter of algebra to show that

V ((t, z)) <
N∑
n=1

[zn − zn−1]v(tn)

whenever (t, z) does not correspond to a trigger-strategy. We can rewrite the right-hand

side as

v(tN) +
N−1∑
n=1

zn[v(tn)− v(tn+1)].

Now let N1 = max{n|tn ≤ t}. Since v is nondecreasing for all t < t, we have that the last

expression is bounded above by

v(tN) +
N−1∑
n=N1

zn[v(tn)− v(tn+1)],

which, because 0 ≤ zn ≤ 1 and v(tn) − v(tn+1) ≥ 0 for all n ≥ N1, cannot be greater than

v∗. Therefore, we have shown that arbitrageurs only play trigger-strategies, which, in turn,

implies that the aggregate selling pressure s must be a non-decreasing function. On the

other hand, all arbitrageurs sell in [t, t], by virtue of which we have s(t) = 0 for t < t and

s(t) = µ for t > t. Hence,

F (t) =
1

µ
s(t)

is a distribution function.

The distribution function F induces the equilibrium date of burst T . That is,

T (x) = inf{t|µF (t) ≥ κ(x, t), t ≥ 0}. (12)

Take any 0 ≤ x0 ≤ 1. It is obvious that µF (T (x0)) = κ(x0, T (x0)). Also, for all t < T (x0),

we have T−1(t) < x0 and, hence, µF (t) < κ(x0, t).
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Part II: In this second part we show that there is no other equilibrium F fulfilling (12).

Because any F is right-continuous, we know that

t0 = inf{t|µF (t) ≥ κ(x0, t), t ≥ 0}

if, and only if, (i) µF (t) < κ(x0, t) for all t < t0 and (ii) µF (t0) ≥ κ(x0, t0). Therefore, any

other equilibrium F must fulfill (ii) with strict inequality for some x0. This means that it

must have a jump at t0. Now, let x1 be the solution to κ(x, t0) = µF (t0). We must have both

x1 > x0 and T (x1) = T (x0) (because (i) also implies that µF (t) < κ(x1, t) for all t < t0),

which contradicts Lemma 1.

Proof of Proposition 3. From the proof of Lemma 3 we know that t = [π − arcsin(µ/x)]x,

where µ ≤ x ≤ 1. Therefore, t converges to π/2, and not to zero, as µ goes to 1.9 Also,

using (9) we have

v∗ = e(g−r)[π−arcsin(µ/x)]x(1− x) + x− c,

which converges to 1 − c as µ goes to 1. By (11) this implies that t converges to zero as

µ goes to 1. By now, we have shown that the equilibrium support [t, t] converges to the

interval [0, π/2] as µ goes to 1. In the limit, T−1(t) is thus given by (5) for all t ≤ π/2.

Lastly, v∗ approaching 1− c implies that T−1(t) converges to 1 for all t ≤ π/2. Plugging this

and µ = 1 into (6) gives the result because κ(1, t) = sin(t) for t ≤ π/2 by (1).

9Recall that we are restricted to the principal branch of arcsin.
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